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Abstract
Evaluating population genetic inference methods is challenging due to the complexity of evolutionary histories, potential model misspecification, 
and unconscious biases in self-assessment. The Genomic History Inference Strategies Tournament (GHIST) is a community-driven competition 
designed to evaluate methods for inferring evolutionary history from population genomic data. The inaugural Genomic History Inference 
Strategies Tournament competition ran from July to November 2024 and featured four demographic history inference challenges of varying 
complexity: a bottleneck model, a split with isolation model, a secondary contact model with demographic complexity, and an archaic 
admixture model. Data were provided as error-free VCF files, and participants submitted numerical parameter estimates that were scored by 
relative root-mean-squared error. Approximately 60 participants competed, using diverse approaches. Results revealed the current dominance 
of methods based on site frequency spectra, while highlighting the advantages of flexible model-building approaches for complex 
demographic histories. We discuss insights regarding the competition and outline the next iteration, which is ongoing with expanded 
challenge diversity. By providing standardized benchmarks and highlighting areas for improvement, Genomic History Inference Strategies 
Tournament represents a substantial step toward more reliable inference of evolutionary history from genomic data.
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Population genetic inference aims to reconstruct the recent 
evolutionary history of populations from genomic variation 
data. This field has seen explosive growth, driven by the in
creasing availability of whole-genome sequencing data from 
diverse groups of humans and other species (Pool et al. 
2010). But population genetic inference is inherently challen
ging. First, the stochasticity of the evolutionary process means 
that the same history can produce different genetic patterns. 

Second, different histories can produce similar patterns of gen
etic variation, creating an identifiability problem (Myers et al. 
2008; Lapierre et al. 2017; Lawson et al. 2018; Rosen et al. 
2018). Third, real populations rarely conform to the simplified 
models typically used for inference, leading to potential biases 
when models are misspecified (Loog 2021; Momigliano et al. 
2021). Finally, computational constraints often necessitate 
approximations that may impact accuracy.
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Many methods for population genetic inference exist. For 
example, site frequency spectrum (SFS) methods examine the 
distribution of allele frequencies within and among popula
tions (Marth et al. 2004; Gutenkunst et al. 2009; Excoffier 
et al. 2021). Linkage-based approaches analyze patterns of 
linkage disequilibrium or identity-by-descent (IBD) segments 
(Harris and Nielsen 2013; Browning and Browning 2015). 
Markovian coalescent methods reconstruct recent genealogic
al relationships among samples (Li and Durbin 2011; Schiffels 
and Durbin 2014), while ancestral recombination graph 
(ARG) methods explicitly reconstruct the genealogical history 
including recombination events (Rasmussen et al. 2014; 
Kelleher et al. 2019; Speidel et al. 2019). More recently, ma
chine learning approaches apply supervised learning to haplo
type matrices or summary statistics (Schrider and Kern 2018; 
Flagel et al. 2019; Sanchez et al. 2021; Tran et al. 2024). Each 
approach captures only a portion of the information con
tained in genomic data, and different methods excel in differ
ent scenarios.

Papers describing new inference methods typically bench
mark against existing approaches, but these self-assessments 
are often biased (Norel et al. 2011; Boulesteix 2015), if uncon
ciously. First, method developers naturally focus on scenarios 
where their approaches excel, potentially masking weak
nesses. Second, developers have intimate knowledge of opti
mal parameter settings for their own methods but may use 
default parameters for competing methods, leading to unfair 
comparisons. Finally, developers benchmarking their own 
tools know the ground truth they simulated, enabling uncon
scious bias toward that truth. Best-practice guidelines for 
benchmarking studies (Boulesteix 2015; Lotterhos et al. 
2022) can reduce, but not eliminate, these biases.

Independent benchmarking studies can provide more reli
able conclusions than developer-driven benchmarking 
(Boulesteix et al. 2013), and they have been conducted in 
population genomics, but limitations remain. While develop
ing a data simulation framework for the community, the 
stdpopsim project compared methods for inferring demo
graphic history, distributions of fitness effects, and selective 
sweeps, although not systematically (Adrion et al. 2020; 
Gower et al. 2025). For demographic history inference, para
metric SFS-based methods have been compared with non
parametric SFS-based (Lapierre et al. 2017) and Markovian 
coalescent methods (Beichman et al. 2017). The confounding 
effects of background selection on such inference have been 
studied for SFS-based and Markovian coalescent methods 
(Johri et al. 2021) and ARG-based methods (Marsh and 
Johri 2024). Brandt et al. (2022) evaluated the accuracy of 
ARG inference methods in estimating coalescence times, 
Peng et al. (2025) evaluated ARG-based methods for predict
ing historical polygenic scores, and Patton et al. (2019) eval
uated nonparametric methods for demographic history 
inference under varying genome assembly quality. Although 
these studies have investigated many different tools, each has 
been carried out by a small group of authors, and their expert
ise in the tools tested can strongly influence benchmark results 
(Lotterhos et al. 2016; Weber et al. 2019). And because each 
of these studies is singular, it is difficult to assess progress in 
the field from them.

Community-based competitions have proven effective at 
driving innovation across multiple domains of computational 
biology (Meyer et al. 2011). The Critical Assessment of 
Protein Structure Prediction (CASP), running since 1994, is 
perhaps the most successful (Moult et al. 1995). By providing 

semi-annual blind tests of protein structure prediction meth
ods, CASP has catalyzed remarkable improvements, culminat
ing in the 14th competition with AlphaFold 2’s breakthrough 
performance that revolutionized structural biology (Jumper 
et al. 2021; Kryshtafovych et al. 2021). Similarly, challenges 
from DREAM (Dialogue for Reverse Engineering 
Assessment and Methods) have addressed diverse problems 
in systems biology and genomics, from gene regulatory net
work inference to disease prediction (Stolovitzky et al. 2007; 
Marbach et al. 2012; Saez-Rodriguez et al. 2016). More re
cently, the Critical Assessment of Genome Interpretation fo
cuses on predicting phenotypic consequences of genetic 
variants, driving improvements in variant effect prediction 
(Critical Assessment of Genome Interpretation Consortium 
2024). PrecisionFDA challenges evaluate methods for variant 
calling, genome assembly, and other genomics tasks, setting 
standards for precision medicine applications (Olson et al. 
2022). These examples illustrate the power of competition- 
based assessments of computational biology methods. In evo
lutionary inference, real-world data for which the truth is 
known is typically lacking (see Randall et al. 2016 for an ex
ception), but modern simulators capture enough features of 
real data to provide valuable insights (Baumdicker et al. 
2022; Haller and Messer 2023).

The Genomic History Inference Strategies Tournament 
(GHISTa) adapts the successful competition model to address 
the specific challenges of population genetic inference. Here, 
we report results from the first competition, which consisted 
of four challenges focused on inferring demographic history. 
The competition attracted many participants, demonstrated 
the feasibility of the model, and revealed current community 
practices.

Methods
The organizing team (authors Struck and Gutenkunst) and the 
design committee (authors Lotterhos, Moreno-Estrada, 
Ralph, and Siepel) collaborated closely to develop the struc
ture of the first GHIST competition. Although creating highly 
complex challenges was tempting, we prioritized accessibility 
to ensure early community engagement and success. We chose 
demographic history inference as the competition’s focus, be
cause it is foundational to many other population genetic ana
lyses, it allows comparison across a variety of established 
methods, and aligns with the organizers’ expertise. To further 
encourage participation, we outlined a proactive communica
tion strategy and offered authorship on the resulting paper as 
recognition for the top-performing competitors.

The structure of the first GHIST competition was developed 
in collaboration between the organizing team (authors Struck 
and Gutenkunst) and design committee (authors Lotterhos, 
Moreno-Estrada, Ralph, and Siepel). While it was tempting 
to develop extremely complex challenges, accessibility was 
deemed important for early success of the competition. It 
was decided to focus on demographic history inference, be
cause it is foundational for other population genetics inference 
tasks, there are many methods to compare, and because the or
ganizers have specific expertise. To engage community partici
pation, a preliminary plan for communications was also 
developed. Finally, to incentivize participation, it was decided 
that top competitors would be offered authorship on the re
sulting paper.

The inaugural GHIST competition consisted of four demo
graphic history inference challenges. These were a simple 
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bottleneck, a simple split with migration, a complex split with 
secondary contact, and a complex archaic admixture scenario. 
Competitors could submit to any challenge(s) they chose, in any 
order. The scenarios were parameterized such that existing 
methods were expected to have good statistical power and sam
ple sizes were set to be similar to contemporary non-human 
data sets. For all four challenges, the data were simulated using 
the Wright-Fisher coalescent method msprime (Baumdicker 
et al. 2022) and distributed as error-free Variant Call Format 
(VCF) files (Danecek et al. 2011), with only biallelic sites and 
correct ancestral states provided. To minimize complexity, mu
tation and recombination rates were uniform across the simu
lated regions, and selection was absent.

For each challenge, competitors reported estimates for a 
small number of key population genetic parameters, such as 
population sizes, divergence times, or admixture proportions. 
They were told the total size of the simulated region and the 
true simulated mutation and recombination rates. Entries 
were scored based on the relative root-mean-squared error be
tween submitted θ̂ and true parameter values θ:

RRMSE =

����������������
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θi
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􏽶
􏽵
􏽵
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. (1) 

This interpretable metric allowed comparison across parame
ters of different scales and penalized both over- and under- 
estimation equally. For each challenge, the leaderboard was 
ranked based on RRMSE scores, with lower scores indicating 
better performance. To allow methodological refinement, 
competitors were allowed five submissions for each challenge. 
In addition to their inferences, competitors were asked to sub
mit a brief write-up of their approach, including software tools 
used and the logical flow of their analyses. The scripts for gen
erating the data and scoring submissions are available at 
https://github.com/tjstruck/GHIST-2024-paper.

The competition was hosted on the Synapse platform devel
oped by Sage Bionetworks, a not-for-profit organization that 
promotes open science and collaborative research. Synapse 
provided automated handling of competitor submissions, in
cluding timestamps, versioning, validation, and real-time 
leaderboards. The integrated wiki functionality was used for 
competition documentation and tutorials, and discussion 
boards enabled competitors to ask questions of the organizers. 
The Synapse site for the first GHIST competition is available at 
https://synapse.org/Synapse:syn51614781, and the main 
GHIST website is at https://ghist.bio.

The inaugural GHIST competition ran from July to 
November 2024, to span the summer conference season and 

the beginning of the academic term (Fig. 1). It began with a kick
off workshop at the Society for Molecular Biology and 
Evolution (SMBE) conference in Puerto Vallarta, Mexico, where 
participants were introduced to the competition, analyzed data 
from the Bottleneck challenge using dadi-cli (Huang et al. 
2023), and submitted their inferences. The competition ex
tended into the academic term to enable new students to partici
pate as a training opportunity. The competition was promoted 
in-person at the SMBE and Evolution conferences, through posts 
to the Evoldir, dadi user, and fastsimcoal user mailing lists, and 
through targeted emails to specific investigators known to the 
organizers. It was also promoted through posts on X and 
Bluesky by the organizers and SMBE.

Results
The inaugural GHIST competition attracted approximately 
60 participants spanning career stages from graduate students 
to senior faculty. Participation varied across challenges, with 
more entries for the simpler challenges. Competitors em
ployed a variety of approaches, with top competitors mostly 
relying on the site frequency spectrum (SFS). A variety of soft
ware was employed, including custom pipelines.

Fig. 1. Timeline of the first GHIST competition, including notable 
promotion events.

(a) (b)

(c)

(d)

Fig. 2. GHIST 2024 Bottleneck challenge. a) True simulated 
demographic history. b) Relative root mean square error scores of 
submissions. c) Parameter inferences of majority of submissions. True 
values are indicated by solid lines. d) Parameter inferences zoomed close 
to true values to indicate top competitors. Arrows indicate competitor 
Vaughn’s leaderboard optimization procedure.
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Bottleneck Challenge
The first challenge involved a simple bottleneck (Fig. 2a), with 
competitors inferring the timing and magnitude of the popula
tion decline. Competitors were given 100 megabases (Mb) of 
data from 20 diploid individuals, yielding 219 thousand bial
lelic variants.

Submissions for the bottleneck challenge showed a range of 
strategies and accuracy. The RRMSE values of submissions 
spanned orders of magnitude (Fig. 2b). Almost all submissions 
successfully identified the presence of a bottleneck (Fig. 2c), 
but only a few were highly accurate.

The most accurate submissions for the Bottleneck challenge 
used site frequency spectrum (SFS) approaches (Fig. 2d). 
Competitor Vaughn developed a custom approach using 
mushi’s code for analytically calculating the the expected 
SFS for piecewise constant demographic histories (DeWitt 
et al. 2021) and the Kullback-Leibler (KL) divergence to meas
ure differences between model and data spectra. Competitors 
McMaster and Kovacs used the SFS-based methods dadi-cli 
(Huang et al. 2023) and fastsimcoal2 (Excoffier et al. 2021) 
and the Markovian coalescent tool SMC++ (Terhorst et al. 
2017) for their submissions. Competitor Noskova led a team 
using her GADMA (Noskova et al. 2020, 2023) framework, 
using the dadi (Gutenkunst et al. 2009), moments 
(Jouganous et al. 2017), and momi2 (Kamm et al. 2020) en
gines for calculating model spectra.

A surprise was that top competitor Vaughn metagamed the 
challenge by using the leaderboard to optimize his submis
sions. He made an excellent first submission (Fig. 2d) based 
on the provided data, but this would not have been enough 
to win the challenge. To improve his result, he correctly de
duced that the challenge simulation used round parameter val
ues, and he used his remaining four submissions to search 
through the parameter space using the leaderboard RRMSE 
score to converge on nearly the exact values. Fundamentally, 
the public leaderboard leaked information by enabling com
petitors to know whether subsequent submissions were ap
proaching the true simulated parameter values. Competitor 
Vaughn used the leaderboard and his allowed multiple guesses 
to iteratively optimize his submissions beyond what his initial 
data analysis enabled.

Split with Isolation Challenge
The second challenge involved two populations that diverged 
without subsequent gene flow, representing geographic isola
tion (Fig. 3), with competitors inferring the contemporary 
population sizes and the timing of the split. They were given 
100 Mb of data from 22 and 18 individuals from the two pop
ulations, yielding 1.2 million biallelic variants.

Performance on this challenge was generally strong, with 
several competitors achieving high accuracy for all three pa
rameters (Table 1). SFS-based methods performed well in 
this challenge, with competitor Vaughn using msprime and 
tskit (Kelleher et al. 2016; Wong et al. 2024) to calculate ex
pected spectra by averaging over multiple simulations and 
KL divergence to fit the model and McMaster and Kovacs us
ing dadi-cli for inference. The Team of Daigle and Ray used a 
machine learning approach. They first used dadi to identify the 
relevant ranges of parameter values, then simulated data 
over those ranges with msprime, and then used scikit-allel 
(Miles et al. 2024) and pylibseq (Thornton 2003) to calculate 
summary statistics, including statistics based on the SFS, 
haplotypes, and LD decay. These summary statistics were 
then passed to a multi-layer perceptron for inference. 
However, their best-scoring submission for this challenge 
simply employed dadi. As in the first Challenge, competitor 
Vaughn achieved the top score by strategically rounding his 
inferences.

Secondary Contact Challenge
The third challenge involved secondary contact between iso
lated populations, with complexity in population size histories 
that no parametric model was expected to capture (Fig. 4a). 
Competitors were tasked with inferring the contemporary 
population sizes, timing of the split and recontact, and the 
rate of migration after recontact. Competitors were again 
given 100 Mb of data, from 22 diploid mainland individuals 
and 8 island individuals, for a total of 842 thousand 
biallelic sites.

As expected, this challenge was more difficult than the pre
vious two, with no submission accurately estimating all pa
rameters (Table 2). The team of Daigle and Ray did well 
with their machine learning approach based on summary sta
tistics. Competitor Vaughn’s top submissions were all based 
on leaderboard optimization after his initial inference. All 
these submissions assumed simple constant population size 
histories, like the truth in the Split with Isolation challenge. 
The best performance came from the GADMA team, using 
the moments engine (Table 2). GADMA automatically builds 
and refines models of increasing complexity, and their best 
model allowed for growth in both populations (Fig. 4b), per
haps enabling their model to account for some of the effects of 
the true complex population size changes.

Fig. 3. True demographic history for the Split with Isolation challenge, 
represented using demesdraw (Gower et al. 2022).

Table 1 Top submissions for the Split with Isolation challenge

RRMSE Neast Nwest T Competitor Approach

truth 130,000 20,000 13,333
0.005 130,000 20,100 13,300 Vaughn metagaming
0.027 126,686 19,973 13,233 McMaster, 

Kovacs
dadi-cli

0.029 126,941 19,867 13,119 Daigle, Ray dadi
0.031 125,992 20,109 13,301 Vaughn msprime 

SFS
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Archaic Admixture Challenge
To probe a distinct but related form of inference, the final chal
lenge involved archaic admixture. Competitors were tasked 
with inferring the timing and magnitude of admixture into 
two modern populations (Fig. 5). They were given 250 Mb 
of data from 20 and 16 samples for the modern populations, 
along with 1 to 3 samples from each of the potential archaic 
contributors, sampled 17,500 to 100,000 simulated years 
ago, for a total of 1.7 million biallelic sites.

The top competitors accurately estimated admixture pro
portions but were less accurate when estimating timings 
(Table 3). For each modern population, competitor Vaughn 
used msprime simulations to simulate a two-population model 
with archaic admixture from a ghost population and fit that to 
the SFS from the modern population. He then optimized the 
leaderboard to refine his estimates. The GADMA software 
does not support ancient samples, so it could not be applied 
to this challenge. But the GADMA team used momi2 
(Kamm et al. 2020) directly to fit models involving all five sam
ple groups, achieving superior accuracy before metagaming.

Competitor Feedback
Competitors noted several lessons from the competition, and 
they overall found it valuable. For those new to population 
genetics inference, engaging with the challenges was difficult. 

Poor documentation was noted for some popular tools, such 
as dadi and dadi-cli, which made it difficult to get started with
out video tutorials or personal mentorship. Competitors also 
noted that different tools used different definitions of param
eter values, especially migration rates, so care was needed in 
translating between them. They also noted that parameter op
timization was often more difficult than they expected, so that 
close monitoring of tool runs was required to achieve best re
sults. Finally, several student competitors highlighted how 
much they learned through the experience.

Discussion
The inaugural GHIST competition demonstrated the feasibil
ity and value of a community-driven evaluation framework 
for population genetic inference methods. The Synapse plat
form proved robust and capable, and the range of challenges 
enabled accessibility while pushing the limits of existing infer
ence methods. The conference-based launch and extended 
timeframe facilitated participation from diverse researchers, 
including students.

The GHIST competition provided several insights into the 
relative performance of inference approaches. Approaches 
based on the site frequency spectrum were most common 
and successful, because they are both accessible from estab
lished software tools and powerful for demographic inference. 
For the Bottleneck, Split with Isolation, and Secondary 
Contact challenges, the GADMA team directly compared 
SFS-based engines with the moments.LD engine that uses 
multi-population linkage disequilibrium statistics (Ragsdale 
and Gravel 2019, 2020), achieving better scores with 
SFS-based engines. Approaches based on machine learning 
showed promise but were not widely used by competitors. 
As those approaches become more accessible, we expect their 
representation and success to increase. Almost all approaches 
applied assumed prespecified parametric models, which may 
not capture the complexity of real demographic histories 
(Loog 2021). The exception was GADMA, and its success in 
the Secondary Contact challenge (Fig. 4a), which was designed 
to violate typical pre-specification, highlights the importance 
of model flexibility when dealing with complex histories. A 
caution is that GHIST cannot distinguish between perform
ance properties of methods in theory and how they are used 
by competitors in practice. User expertise affects the outcomes 
of genomic analysis (Lotterhos et al. 2016), and feedback from 
some GHIST competitors emphasized the challenges in adopt
ing some methods due to limited or overly sophisticated docu
mentation. Increased participation may enable distinctions to 
be drawn between the performance of typical versus expert 
users of different methods.

There were notable gaps in the methods employed by partic
ipants. Approaches based on ancestral recombination graphs 
show great promise for population genetics (Rasmussen 
et al. 2014; Kelleher et al. 2019; Speidel et al. 2019; Deng 
et al. 2025), but they were not applied to this competition, per
haps because of their high computational cost or complexity. 
The Archaic Admixture challenge (Fig. 5) was designed to en
courage the use of specialized methods based on lengths of ad
mixture tracts (Pool and Nielsen 2009; Gravel 2012), but no 
competitors used them, perhaps due to insufficient outreach 
to the relevant subset of researchers. Methods for demograph
ic history inference based on the Markovian coalescent (Li and 
Durbin 2011; Schiffels and Durbin 2014) that don’t depend on 
a user-specified parametric model were also underrepresented 

(a)

(b)

Fig. 4. GHIST 2024 Secondary Contact challenge. a) True demographic 
history, represented using demesdraw (Gower et al. 2022). 
b) Top-scoring model, from the GADMA team.
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relative to their popularity in the literature. They differ funda
mentally from methods like dadi (Gutenkunst et al. 2009) and 
momi2 (Kamm et al. 2020) that output explicit demographic 
history model inferences, because they typically output coales
cence or cross-coalescence rates. Changes in these rates are 
often interpreted in terms of demographic history, but that in
terpretation is an additional subjective step toward submitting 
inferences from these tools to the present competition.

The second GHIST competition launched at the Evolution 
conference in June 2025 in Athens, Georgia and runs through 
November 2025, with expanded challenge types and refine
ments based on lessons from the inaugural tournament. To dis
courage metagaming while preserving the benefits of iterative 
submission, for each challenge there are now two data sets. 
Unlimited submissions are allowed on a testing data set, to en
able exploration of different approaches. But only a single sub
mission is allowed on the final data set, to avoid leaderboard 
metagaming. To increase the realism and difficulty of demo
graphic history inference, two of the challenges include back
ground selection, leveraging the stdpopsim framework for 
simulation (Gower et al. 2025). To expand the range of tasks, 
four challenges involve inferring single or multiple hard select
ive sweeps (Stephan 2019), under simple and complex demo
graphic scenarios and with and without background 

selection. Finally, to increase accessibility, simple web applica
tions were developed to enable users to manually fit bottleneck 
models to site frequency spectra and to detect selective sweeps 
using summary statistics. The Synapse site for this second com
petition is at https://synapse.org/Synapse:syn65877330.

The first and second GHIST competitions use simple metrics 
for evaluating submissions based on parameter values or sweep 
locations, but future competitions could use more complex 
metrics. Within Synapse, submissions are scored using custom 
code executed on a cloud instance, so in principle anything that 
can be calculated can be scored. For example, agreement with 
the complex true population size history in the Secondary 
Contact challenge (Fig. 4) could be assessed more completely 
by a integrated deviation between submitted and true popula
tion sizes over time. For some applications, distributions of co
alescent times might be more relevant, which could be 
simulated from submitted demographic history models and 
compared with those from the true simulated model. Either 
more complex evaluation would require submitters to provide 
complete models, either in a standardized format like Demes 
(Gower et al. 2022) or as runnable Docker images, which 
would substantially increase complexity of submission.

Demographic history inference is not only about estimating 
parameters; it also frequently entails model selection (Smith 

Table 2 Top submissions for Secondary Contact challenge

RRMSE Nmain N island T split Tmig m Competitor Approach

truth 240000 36000 23000 1277 5.0
0.92 284284 15567 24397 950 8.2 GADMA team GADMA w/ moments
0.97 150000 35000 30000 200 5.0 Vaughn metagaming
1.05 200000 12000 18000 310 5.0 Vaughn metagaming
1.05 220000 60000 17000 300 5.0 Vaughn metagaming
1.30 211999 10945 15818 215 1.8 Daigle, Ray summary stats perceptron

Fig. 5. True demographic history for Archaic Admixture challenge, represented using demesdraw (Gower et al. 2022).

Table 3 Top submissions for Archaic Admixture challenge

RRMSE %admix1 Tadmix1 %admix2 Tadmix2 Competitor Approach

truth 1.10 1566 0.20 883
0.10 1.00 1500 0.20 900 Vaughn metagaming
0.78 1.01 1096 0.19 252 GADMA team momi2
0.81 1.02 1066 0.16 250 GADMA team momi2
1.05 0.59 1000 0.37 1000 GADMA team momi2
1.93 1.06 2500 0.22 2500 Vaughn msprime SFS
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et al. 2017; Johri et al. 2021). For example, the presence or ab
sence of significant gene flow between natural populations is 
often of interest (Edwards et al. 2016; Momigliano et al. 
2021). Particularly in humans, models differ in the number 
of pulses of introgression from archaic hominins into modern 
humans (Browning et al. 2018; Jacobs et al. 2019), and in the 
role of archaic introgression versus structure in ancestral 
African populations (Lorente-Galdos et al. 2019; Ragsdale 
et al. 2023). To evaluate model selection within a competition 
framework, competitors must be asked to analyze a large 
number of data sets that, for example, do and do not include 
gene flow. This would raise the burden on competitors, but it 
represents an important future direction for GHIST.

Ultimately, the success of GHIST depends on community 
participation. The more methods developers, users, educators, 
and students engage with the competitions, the more the com
munity will learn. The space of potential challenges is vast, in
cluding inferences such as distributions of fitness effects 
(Eyre-Walker and Keightley 2007), spatial models (Bradburd 
and Ralph 2019), and polygenic selection (Barghi et al. 
2020), and including complications such as low-pass data 
(Crawford and Lazzaro 2012), polyploidy (Dufresne et al. 
2014), and biased gene conversion (Pouyet et al. 2018).

This initial competition has demonstrated the feasibility and 
utility of competitions for this community. Future competi
tions will enable deep insight into best practices for population 
genetics inference.

Note
a. GHIST is pronounced with a hard “g” sound and a soft “i” sound, 

like a blend of “gift” and “list”.
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