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Abstract

Evaluating population genetic inference methods is challenging due to the complexity of evolutionary histories, potential model misspecification,
and unconscious biases in self-assessment. The Genomic History Inference Strategies Tournament (GHIST) is a community-driven competition
designed to evaluate methods for inferring evolutionary history from population genomic data. The inaugural Genomic History Inference
Strategies Tournament competition ran from July to November 2024 and featured four demographic history inference challenges of varying
complexity: a bottleneck model, a split with isolation model, a secondary contact model with demographic complexity, and an archaic
admixture model. Data were provided as error-free VCF files, and participants submitted numerical parameter estimates that were scored by
relative root-mean-squared error. Approximately 60 participants competed, using diverse approaches. Results revealed the current dominance
of methods based on site frequency spectra, while highlighting the advantages of flexible model-building approaches for complex
demographic histories. We discuss insights regarding the competition and outline the next iteration, which is ongoing with expanded
challenge diversity. By providing standardized benchmarks and highlighting areas for improvement, Genomic History Inference Strategies
Tournament represents a substantial step toward more reliable inference of evolutionary history from genomic data.
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Population genetic inference aims to reconstruct the recent
evolutionary history of populations from genomic variation
data. This field has seen explosive growth, driven by the in-
creasing availability of whole-genome sequencing data from
diverse groups of humans and other species (Pool et al.
2010). But population genetic inference is inherently challen-
ging. First, the stochasticity of the evolutionary process means
that the same history can produce different genetic patterns.

Second, different histories can produce similar patterns of gen-
etic variation, creating an identifiability problem (Myers et al.
2008; Lapierre et al. 2017; Lawson et al. 2018; Rosen et al.
2018). Third, real populations rarely conform to the simplified
models typically used for inference, leading to potential biases
when models are misspecified (Loog 2021; Momigliano et al.
2021). Finally, computational constraints often necessitate
approximations that may impact accuracy.
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Many methods for population genetic inference exist. For
example, site frequency spectrum (SFS) methods examine the
distribution of allele frequencies within and among popula-
tions (Marth et al. 2004; Gutenkunst et al. 2009; Excoffier
et al. 2021). Linkage-based approaches analyze patterns of
linkage disequilibrium or identity-by-descent (IBD) segments
(Harris and Nielsen 2013; Browning and Browning 2015).
Markovian coalescent methods reconstruct recent genealogic-
al relationships among samples (Li and Durbin 2011; Schiffels
and Durbin 2014), while ancestral recombination graph
(ARG) methods explicitly reconstruct the genealogical history
including recombination events (Rasmussen et al. 2014;
Kelleher et al. 2019; Speidel et al. 2019). More recently, ma-
chine learning approaches apply supervised learning to haplo-
type matrices or summary statistics (Schrider and Kern 2018;
Flagel et al. 2019; Sanchez et al. 2021; Tran et al. 2024). Each
approach captures only a portion of the information con-
tained in genomic data, and different methods excel in differ-
ent scenarios.

Papers describing new inference methods typically bench-
mark against existing approaches, but these self-assessments
are often biased (Norel et al. 2011; Boulesteix 2015), if uncon-
ciously. First, method developers naturally focus on scenarios
where their approaches excel, potentially masking weak-
nesses. Second, developers have intimate knowledge of opti-
mal parameter settings for their own methods but may use
default parameters for competing methods, leading to unfair
comparisons. Finally, developers benchmarking their own
tools know the ground truth they simulated, enabling uncon-
scious bias toward that truth. Best-practice guidelines for
benchmarking studies (Boulesteix 2015; Lotterhos et al.
2022) can reduce, but not eliminate, these biases.

Independent benchmarking studies can provide more reli-
able conclusions than developer-driven benchmarking
(Boulesteix et al. 2013), and they have been conducted in
population genomics, but limitations remain. While develop-
ing a data simulation framework for the community, the
stdpopsim project compared methods for inferring demo-
graphic history, distributions of fitness effects, and selective
sweeps, although not systematically (Adrion et al. 2020;
Gower et al. 2025). For demographic history inference, para-
metric SFS-based methods have been compared with non-
parametric SFS-based (Lapierre et al. 2017) and Markovian
coalescent methods (Beichman et al. 2017). The confounding
effects of background selection on such inference have been
studied for SFS-based and Markovian coalescent methods
(Johri et al. 2021) and ARG-based methods (Marsh and
Johri 2024). Brandt et al. (2022) evaluated the accuracy of
ARG inference methods in estimating coalescence times,
Peng et al. (2025) evaluated ARG-based methods for predict-
ing historical polygenic scores, and Patton et al. (2019) eval-
uated nonparametric methods for demographic history
inference under varying genome assembly quality. Although
these studies have investigated many different tools, each has
been carried out by a small group of authors, and their expert-
ise in the tools tested can strongly influence benchmark results
(Lotterhos et al. 2016; Weber et al. 2019). And because each
of these studies is singular, it is difficult to assess progress in
the field from them.

Community-based competitions have proven effective at
driving innovation across multiple domains of computational
biology (Meyer et al. 2011). The Critical Assessment of
Protein Structure Prediction (CASP), running since 1994, is
perhaps the most successful (Moult et al. 1995). By providing
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semi-annual blind tests of protein structure prediction meth-
ods, CASP has catalyzed remarkable improvements, culminat-
ing in the 14th competition with AlphaFold 2’s breakthrough
performance that revolutionized structural biology (Jumper
et al. 2021; Kryshtafovych et al. 2021). Similarly, challenges
from DREAM (Dialogue for Reverse Engineering
Assessment and Methods) have addressed diverse problems
in systems biology and genomics, from gene regulatory net-
work inference to disease prediction (Stolovitzky et al. 2007;
Marbach et al. 2012; Saez-Rodriguez et al. 2016). More re-
cently, the Critical Assessment of Genome Interpretation fo-
cuses on predicting phenotypic consequences of genetic
variants, driving improvements in variant effect prediction
(Critical Assessment of Genome Interpretation Consortium
2024). PrecisionFDA challenges evaluate methods for variant
calling, genome assembly, and other genomics tasks, setting
standards for precision medicine applications (Olson et al.
2022). These examples illustrate the power of competition-
based assessments of computational biology methods. In evo-
lutionary inference, real-world data for which the truth is
known is typically lacking (see Randall et al. 2016 for an ex-
ception), but modern simulators capture enough features of
real data to provide valuable insights (Baumdicker et al.
2022; Haller and Messer 2023).

The Genomic History Inference Strategies Tournament
(GHIST?) adapts the successful competition model to address
the specific challenges of population genetic inference. Here,
we report results from the first competition, which consisted
of four challenges focused on inferring demographic history.
The competition attracted many participants, demonstrated
the feasibility of the model, and revealed current community
practices.

Methods

The organizing team (authors Struck and Gutenkunst) and the
design committee (authors Lotterhos, Moreno-Estrada,
Ralph, and Siepel) collaborated closely to develop the struc-
ture of the first GHIST competition. Although creating highly
complex challenges was tempting, we prioritized accessibility
to ensure early community engagement and success. We chose
demographic history inference as the competition’s focus, be-
cause it is foundational to many other population genetic ana-
lyses, it allows comparison across a variety of established
methods, and aligns with the organizers’ expertise. To further
encourage participation, we outlined a proactive communica-
tion strategy and offered authorship on the resulting paper as
recognition for the top-performing competitors.

The structure of the first GHIST competition was developed
in collaboration between the organizing team (authors Struck
and Gutenkunst) and design committee (authors Lotterhos,
Moreno-Estrada, Ralph, and Siepel). While it was tempting
to develop extremely complex challenges, accessibility was
deemed important for early success of the competition. It
was decided to focus on demographic history inference, be-
cause it is foundational for other population genetics inference
tasks, there are many methods to compare, and because the or-
ganizers have specific expertise. To engage community partici-
pation, a preliminary plan for communications was also
developed. Finally, to incentivize participation, it was decided
that top competitors would be offered authorship on the re-
sulting paper.

The inaugural GHIST competition consisted of four demo-
graphic history inference challenges. These were a simple
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bottleneck, a simple split with migration, a complex split with
secondary contact, and a complex archaic admixture scenario.
Competitors could submit to any challenge(s) they chose, in any
order. The scenarios were parameterized such that existing
methods were expected to have good statistical power and sam-
ple sizes were set to be similar to contemporary non-human
data sets. For all four challenges, the data were simulated using
the Wright-Fisher coalescent method msprime (Baumdicker
et al. 2022) and distributed as error-free Variant Call Format
(VCEF) files (Danecek et al. 2011), with only biallelic sites and
correct ancestral states provided. To minimize complexity, mu-
tation and recombination rates were uniform across the simu-
lated regions, and selection was absent.

For each challenge, competitors reported estimates for a
small number of key population genetic parameters, such as
population sizes, divergence times, or admixture proportions.
They were told the total size of the simulated region and the
true simulated mutation and recombination rates. Entries
were scored based on the relative root-mean-squared error be-
tween submitted & and true parameter values 6:

RRMSE =

This interpretable metric allowed comparison across parame-
ters of different scales and penalized both over- and under-
estimation equally. For each challenge, the leaderboard was
ranked based on RRMSE scores, with lower scores indicating
better performance. To allow methodological refinement,
competitors were allowed five submissions for each challenge.
In addition to their inferences, competitors were asked to sub-
mit a brief write-up of their approach, including software tools
used and the logical flow of their analyses. The scripts for gen-
erating the data and scoring submissions are available at
https://github.com/tjstruck/GHIST-2024-paper.

The competition was hosted on the Synapse platform devel-
oped by Sage Bionetworks, a not-for-profit organization that
promotes open science and collaborative research. Synapse
provided automated handling of competitor submissions, in-
cluding timestamps, versioning, validation, and real-time
leaderboards. The integrated wiki functionality was used for
competition documentation and tutorials, and discussion
boards enabled competitors to ask questions of the organizers.
The Synapse site for the first GHIST competition is available at
https:/synapse.org/Synapse:syn51614781, and the main
GHIST website is at https://ghist.bio.

The inaugural GHIST competition ran from July to
November 2024, to span the summer conference season and

Genomic
History
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Competition Top competitors
closed announced

Evolution
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Fig. 1. Timeline of the first GHIST competition, including notable
promotion events.

the beginning of the academic term (Fig. 1). It began with a kick-
off workshop at the Society for Molecular Biology and
Evolution (SMBE) conference in Puerto Vallarta, Mexico, where
participants were introduced to the competition, analyzed data
from the Bottleneck challenge using dadi-cli (Huang et al.
2023), and submitted their inferences. The competition ex-
tended into the academic term to enable new students to partici-
pate as a training opportunity. The competition was promoted
in-person at the SMBE and Evolution conferences, through posts
to the Evoldir, dadi user, and fastsimcoal user mailing lists, and
through targeted emails to specific investigators known to the
organizers. It was also promoted through posts on X and
Bluesky by the organizers and SMBE.

Results

The inaugural GHIST competition attracted approximately
60 participants spanning career stages from graduate students
to senior faculty. Participation varied across challenges, with
more entries for the simpler challenges. Competitors em-
ployed a variety of approaches, with top competitors mostly
relying on the site frequency spectrum (SFS). A variety of soft-
ware was employed, including custom pipelines.
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Fig. 2. GHIST 2024 Bottleneck challenge. a) True simulated
demographic history. b) Relative root mean square error scores of
submissions. ¢) Parameter inferences of majority of submissions. True
values are indicated by solid lines. d) Parameter inferences zoomed close
to true values to indicate top competitors. Arrows indicate competitor
Vaughn's leaderboard optimization procedure.
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Bottleneck Challenge

The first challenge involved a simple bottleneck (Fig. 2a), with
competitors inferring the timing and magnitude of the popula-
tion decline. Competitors were given 100 megabases (Mb) of
data from 20 diploid individuals, yielding 219 thousand bial-
lelic variants.

Submissions for the bottleneck challenge showed a range of
strategies and accuracy. The RRMSE values of submissions
spanned orders of magnitude (Fig. 2b). Almost all submissions
successfully identified the presence of a bottleneck (Fig. 2c),
but only a few were highly accurate.

The most accurate submissions for the Bottleneck challenge
used site frequency spectrum (SFS) approaches (Fig. 2d).
Competitor Vaughn developed a custom approach using
mushi’s code for analytically calculating the the expected
SFS for piecewise constant demographic histories (DeWitt
etal.2021) and the Kullback-Leibler (KL) divergence to meas-
ure differences between model and data spectra. Competitors
McMaster and Kovacs used the SFS-based methods dadi-cli
(Huang et al. 2023) and fastsimcoal2 (Excoffier et al. 2021)
and the Markovian coalescent tool SMC++ (Terhorst et al.
2017) for their submissions. Competitor Noskova led a team
using her GADMA (Noskova et al. 2020, 2023) framework,
using the dadi (Gutenkunst et al. 2009), moments
(Jouganous et al. 2017), and momi2 (Kamm et al. 2020) en-
gines for calculating model spectra.

A surprise was that top competitor Vaughn metagamed the
challenge by using the leaderboard to optimize his submis-
sions. He made an excellent first submission (Fig. 2d) based
on the provided data, but this would not have been enough
to win the challenge. To improve his result, he correctly de-
duced that the challenge simulation used round parameter val-
ues, and he used his remaining four submissions to search
through the parameter space using the leaderboard RRMSE
score to converge on nearly the exact values. Fundamentally,
the public leaderboard leaked information by enabling com-
petitors to know whether subsequent submissions were ap-
proaching the true simulated parameter values. Competitor
Vaughn used the leaderboard and his allowed multiple guesses
to iteratively optimize his submissions beyond what his initial
data analysis enabled.

15000 A
-0
12500 A
10000 A

7500 A

5000 A

Generations ago

2500 A

0 -
east west

Fig. 3. True demographic history for the Split with Isolation challenge,
represented using demesdraw (Gower et al. 2022).
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Split with Isolation Challenge

The second challenge involved two populations that diverged
without subsequent gene flow, representing geographic isola-
tion (Fig. 3), with competitors inferring the contemporary
population sizes and the timing of the split. They were given
100 Mb of data from 22 and 18 individuals from the two pop-
ulations, yielding 1.2 million biallelic variants.

Performance on this challenge was generally strong, with
several competitors achieving high accuracy for all three pa-
rameters (Table 1). SFS-based methods performed well in
this challenge, with competitor Vaughn using msprime and
tskit (Kelleher et al. 2016; Wong et al. 2024) to calculate ex-
pected spectra by averaging over multiple simulations and
KL divergence to fit the model and McMaster and Kovacs us-
ing dadi-cli for inference. The Team of Daigle and Ray used a
machine learning approach. They first used dadi to identify the
relevant ranges of parameter values, then simulated data
over those ranges with msprime, and then used scikit-allel
(Miles et al. 2024) and pylibseq (Thornton 2003) to calculate
summary statistics, including statistics based on the SFS,
haplotypes, and LD decay. These summary statistics were
then passed to a multi-layer perceptron for inference.
However, their best-scoring submission for this challenge
simply employed dadi. As in the first Challenge, competitor
Vaughn achieved the top score by strategically rounding his
inferences.

Secondary Contact Challenge

The third challenge involved secondary contact between iso-
lated populations, with complexity in population size histories
that no parametric model was expected to capture (Fig. 4a).
Competitors were tasked with inferring the contemporary
population sizes, timing of the split and recontact, and the
rate of migration after recontact. Competitors were again
given 100 Mb of data, from 22 diploid mainland individuals
and 8 island individuals, for a total of 842 thousand
biallelic sites.

As expected, this challenge was more difficult than the pre-
vious two, with no submission accurately estimating all pa-
rameters (Table 2). The team of Daigle and Ray did well
with their machine learning approach based on summary sta-
tistics. Competitor Vaughn’s top submissions were all based
on leaderboard optimization after his initial inference. All
these submissions assumed simple constant population size
histories, like the truth in the Split with Isolation challenge.
The best performance came from the GADMA team, using
the moments engine (Table 2). GADMA automatically builds
and refines models of increasing complexity, and their best
model allowed for growth in both populations (Fig. 4b), per-
haps enabling their model to account for some of the effects of
the true complex population size changes.

Table 1 Top submissions for the Split with Isolation challenge

RRMSE Nease Nyest T Competitor Approach
truth 130,000 20,000 13,333

0.005 130,000 20,100 13,300 Vaughn metagaming
0.027 126,686 19,973 13,233 McMaster, dadi-cli

Kovacs
0.029 126,941 19,867 13,119 Daigle, Ray dadi
0.031 125,992 20,109 13,301 Vaughn msprime
SES
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Fig. 4. GHIST 2024 Secondary Contact challenge. a) True demographic
history, represented using demesdraw (Gower et al. 2022).
b) Top-scoring model, from the GADMA team.

Archaic Admixture Challenge

To probe a distinct but related form of inference, the final chal-
lenge involved archaic admixture. Competitors were tasked
with inferring the timing and magnitude of admixture into
two modern populations (Fig. 5). They were given 250 Mb
of data from 20 and 16 samples for the modern populations,
along with 1 to 3 samples from each of the potential archaic
contributors, sampled 17,500 to 100,000 simulated years
ago, for a total of 1.7 million biallelic sites.

The top competitors accurately estimated admixture pro-
portions but were less accurate when estimating timings
(Table 3). For each modern population, competitor Vaughn
used msprime simulations to simulate a two-population model
with archaic admixture from a ghost population and fit that to
the SFS from the modern population. He then optimized the
leaderboard to refine his estimates. The GADMA software
does not support ancient samples, so it could not be applied
to this challenge. But the GADMA team used momi2
(Kamm et al. 2020) directly to fit models involving all five sam-
ple groups, achieving superior accuracy before metagaming.

Competitor Feedback

Competitors noted several lessons from the competition, and
they overall found it valuable. For those new to population
genetics inference, engaging with the challenges was difficult.

Poor documentation was noted for some popular tools, such
as dadi and dadi-cli, which made it difficult to get started with-
out video tutorials or personal mentorship. Competitors also
noted that different tools used different definitions of param-
eter values, especially migration rates, so care was needed in
translating between them. They also noted that parameter op-
timization was often more difficult than they expected, so that
close monitoring of tool runs was required to achieve best re-
sults. Finally, several student competitors highlighted how
much they learned through the experience.

Discussion

The inaugural GHIST competition demonstrated the feasibil-
ity and value of a community-driven evaluation framework
for population genetic inference methods. The Synapse plat-
form proved robust and capable, and the range of challenges
enabled accessibility while pushing the limits of existing infer-
ence methods. The conference-based launch and extended
timeframe facilitated participation from diverse researchers,
including students.

The GHIST competition provided several insights into the
relative performance of inference approaches. Approaches
based on the site frequency spectrum were most common
and successful, because they are both accessible from estab-
lished software tools and powerful for demographic inference.
For the Bottleneck, Split with Isolation, and Secondary
Contact challenges, the GADMA team directly compared
SFS-based engines with the moments.LD engine that uses
multi-population linkage disequilibrium statistics (Ragsdale
and Gravel 2019, 2020), achieving better scores with
SFS-based engines. Approaches based on machine learning
showed promise but were not widely used by competitors.
As those approaches become more accessible, we expect their
representation and success to increase. Almost all approaches
applied assumed prespecified parametric models, which may
not capture the complexity of real demographic histories
(Loog 2021). The exception was GADMA, and its success in
the Secondary Contact challenge (Fig. 4a), which was designed
to violate typical pre-specification, highlights the importance
of model flexibility when dealing with complex histories. A
caution is that GHIST cannot distinguish between perform-
ance properties of methods in theory and how they are used
by competitors in practice. User expertise affects the outcomes
of genomic analysis (Lotterhos et al. 2016), and feedback from
some GHIST competitors emphasized the challenges in adopt-
ing some methods due to limited or overly sophisticated docu-
mentation. Increased participation may enable distinctions to
be drawn between the performance of typical versus expert
users of different methods.

There were notable gaps in the methods employed by partic-
ipants. Approaches based on ancestral recombination graphs
show great promise for population genetics (Rasmussen
et al. 2014; Kelleher et al. 2019; Speidel et al. 2019; Deng
etal. 2025), but they were not applied to this competition, per-
haps because of their high computational cost or complexity.
The Archaic Admixture challenge (Fig. 5) was designed to en-
courage the use of specialized methods based on lengths of ad-
mixture tracts (Pool and Nielsen 2009; Gravel 2012), but no
competitors used them, perhaps due to insufficient outreach
to the relevant subset of researchers. Methods for demograph-
ic history inference based on the Markovian coalescent (Li and
Durbin 2011; Schiffels and Durbin 2014) that don’t depend on
a user-specified parametric model were also underrepresented
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RRMSE Nmain Nisiand Tspiit Thig m Competitor Approach
truth 240000 36000 23000 1277 5.0
0.92 284284 15567 24397 950 8.2 GADMA team GADMA w/ moments
0.97 150000 35000 30000 200 5.0 Vaughn metagaming
1.05 200000 12000 18000 310 5.0 Vaughn metagaming
1.05 220000 60000 17000 300 5.0 Vaughn metagaming
1.30 211999 10945 15818 215 1.8 Daigle, Ray summary stats perceptron
25000 A
S 20000 A
©
)
c
© 15000 A —0>
)
© >4
] >
S 10000 A [
(G - b 1 > -
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0 - |_l Iﬂ s [
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Fig. 5. True demographic history for Archaic Admixture challenge, represented using demesdraw (Gower et al. 2022).
Table 3 Top submissions for Archaic Admixture challenge
RRMSE %admixq Tadmix, %admix, Tadmix, Competitor Approach
truth 1.10 1566 0.20 883
0.10 1.00 1500 0.20 900 Vaughn metagaming
0.78 1.01 1096 0.19 252 GADMA team momi2
0.81 1.02 1066 0.16 250 GADMA team momi2
1.05 0.59 1000 0.37 1000 GADMA team momi2
1.93 1.06 2500 0.22 2500 Vaughn msprime SFS

relative to their popularity in the literature. They differ funda-
mentally from methods like dadi (Gutenkunst et al. 2009) and
momi2 (Kamm et al. 2020) that output explicit demographic
history model inferences, because they typically output coales-
cence or cross-coalescence rates. Changes in these rates are
often interpreted in terms of demographic history, but that in-
terpretation is an additional subjective step toward submitting
inferences from these tools to the present competition.

The second GHIST competition launched at the Evolution
conference in June 2025 in Athens, Georgia and runs through
November 2025, with expanded challenge types and refine-
ments based on lessons from the inaugural tournament. To dis-
courage metagaming while preserving the benefits of iterative
submission, for each challenge there are now two data sets.
Unlimited submissions are allowed on a testing data set, to en-
able exploration of different approaches. But only a single sub-
mission is allowed on the final data set, to avoid leaderboard
metagaming. To increase the realism and difficulty of demo-
graphic history inference, two of the challenges include back-
ground selection, leveraging the stdpopsim framework for
simulation (Gower et al. 2025). To expand the range of tasks,
four challenges involve inferring single or multiple hard select-
ive sweeps (Stephan 2019), under simple and complex demo-
graphic scenarios and with and without background

selection. Finally, to increase accessibility, simple web applica-
tions were developed to enable users to manually fit bottleneck
models to site frequency spectra and to detect selective sweeps
using summary statistics. The Synapse site for this second com-
petition is at https:/synapse.org/Synapse:syn65877330.

The first and second GHIST competitions use simple metrics
for evaluating submissions based on parameter values or sweep
locations, but future competitions could use more complex
metrics. Within Synapse, submissions are scored using custom
code executed on a cloud instance, so in principle anything that
can be calculated can be scored. For example, agreement with
the complex true population size history in the Secondary
Contact challenge (Fig. 4) could be assessed more completely
by a integrated deviation between submitted and true popula-
tion sizes over time. For some applications, distributions of co-
alescent times might be more relevant, which could be
simulated from submitted demographic history models and
compared with those from the true simulated model. Either
more complex evaluation would require submitters to provide
complete models, either in a standardized format like Demes
(Gower et al. 2022) or as runnable Docker images, which
would substantially increase complexity of submission.

Demographic history inference is not only about estimating
parameters; it also frequently entails model selection (Smith
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etal. 2017; Johri et al. 2021). For example, the presence or ab-
sence of significant gene flow between natural populations is
often of interest (Edwards et al. 2016; Momigliano et al.
2021). Particularly in humans, models differ in the number
of pulses of introgression from archaic hominins into modern
humans (Browning et al. 2018; Jacobs et al. 2019), and in the
role of archaic introgression versus structure in ancestral
African populations (Lorente-Galdos et al. 2019; Ragsdale
etal. 2023). To evaluate model selection within a competition
framework, competitors must be asked to analyze a large
number of data sets that, for example, do and do not include
gene flow. This would raise the burden on competitors, but it
represents an important future direction for GHIST.

Ultimately, the success of GHIST depends on community
participation. The more methods developers, users, educators,
and students engage with the competitions, the more the com-
munity will learn. The space of potential challenges is vast, in-
cluding inferences such as distributions of fitness effects
(Eyre-Walker and Keightley 2007), spatial models (Bradburd
and Ralph 2019), and polygenic selection (Barghi et al.
2020), and including complications such as low-pass data
(Crawford and Lazzaro 2012), polyploidy (Dufresne et al.
2014), and biased gene conversion (Pouyet et al. 2018).

This initial competition has demonstrated the feasibility and
utility of competitions for this community. Future competi-
tions will enable deep insight into best practices for population
genetics inference.

Note

a. GHIST is pronounced with a hard “g” sound and a soft
like a blend of “gift” and “list”.

3
1

sound,
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