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Summary:   
Evidence consistent with immunoediting in human cancer is associative. To provide direct evidence that 
differences in the neoantigen profile are immune-mediated, we compared neoantigen profiles of cutaneous 
squamous cell carcinoma (cSCC) from immunocompetent and immunosuppressed patients. Despite 
consistency in the overall mutational burden and signature, immunocompetent patients have a lower clonal 
mutational burden. Clonal mutations in cSCC from immunocompetent patients have a lower proportion of 
neoantigens predicted to bind MHC class I, supporting the immune system’s role in shaping the neoantigen 
profile. We observe an increase in exhausted CD8+ T cells in tumors from immunocompetent patients, 
suggesting an explanation for the persistence of binding neoantigens subclonally. Finally, neoantigens with a 
higher predicted MHC class I binding relative to the unmutated peptide are enriched subclonally in 
immunocompetent patients. Overall, this work supports the immune system’s role in sculpting the neoantigen 
profile of cSCC.  
 
Keywords: Immune evasion, Tumor escape, Immunologic surveillance, T-cell exhaustion, Squamous cell 
carcinoma, Skin cancer, Neoplasm antigens, Immunotherapy, Tumor microenvironment  
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Introduction:  
Immunoediting is the process by which the immune system targets and removes cancer cells visible to the 
immune system, allowing the populations least visible to the immune system to persist. Immunoediting was 
defined in mouse models, where a number of studies observed increased tumor formation and growth in 
immunocompromised mice compared to mice with intact immune systems.1, 2, 3, 4, 5 Furthermore, chemically 
induced sarcomas that form in immunocompetent mice grow when transplanted into immunocompetent mice, 
whereas sarcomas that develop in immunocompromised RAG-/- mice fail to grow in immunocompetent mice,6 
demonstrating that tumors that form in immunocompromised mice fail to develop mechanisms to escape 
immune-mediated destruction. More recent work in autochthonous mouse models has demonstrated that the 
immune system primarily restricts clonal neoantigens in immunocompetent mice, leading to greater tumor 
heterogeneity in tumors that arise in immunocompetent compared to immunocompromised mice.7 These 
mouse studies have provided fundamental advances in our understanding of the extent and mechanisms of 
immunoediting in cancer. In human tumors, findings consistent with immunoediting have been found in 1) 
invasive cutaneous squamous cell carcinoma (cSCC) vs. precursor actinic keratoses,8 2) late vs. early 
recurrent tumors,9 3) tumors after vs. before immune checkpoint inhibition,10 4) in tumor regions with high 
immune infiltration and intact MHC alleles,11 5) compared to a neutral mutational profile in a pan-cancer 
analysis,12 and 6) comparing synonymous to non-synonymous mutations within the same tumor.13 However, 
the findings in human tumors that are consistent with immunoediting are associative in nature and have not 
been shown to be due to the immune system.  
 
Further complicating the challenges in analyzing immunoediting in human cancer is an incomplete 
understanding of the characteristics of neoantigens that elicit an immune response. While many prediction 
models have been created to date,9, 14, 15, 16, 17, 18, 19, 20 two central challenges remain. First, testing of 
neoantigens in human studies is performed after in silico prediction, leading to the potential to reaffirm starting 
biases.19, 21, 22, 23, 24 Secondly, immunogenicity of neoantigens is tested in human studies through the 
identification of neoantigen-specific, IFNɣ-secreting, CD8+ T cells (e.g. by ELISPOT) but no confirmation of the 
ability of individual neoantigens to mediate tumor rejection is directly measured. Since neoantigens that elicit 
IFNɣ-secreting CD8+ T cells are imperfectly correlated with neoantigens that elicit T cell-mediated immune 
destruction in mouse models,25, 26 this method of testing may introduce additional biases. Therefore, there is a 
need for further understanding of the characteristics of neoantigens that elicit immune responses in human 
cancer. 
 
Here, we compared characteristics of the neoantigen and immune profile between cSCC in immunocompetent 
and immunosuppressed patients to illuminate the effects of immunoediting in primary tumors due to an intact 
immune response. Immunosuppressed solid organ transplant recipients have a 65-253-fold higher risk of 
developing cSCC,27, 28, 29, 30, 31 suggesting that cSCC is highly constrained by the immune system in 
immunocompetent patients. Therefore, tumors from immunocompetent patients are expected to have 
developed mechanisms of immune evasion that are absent in the tumors from immunosuppressed patients. As 
a further control, we used in silico mutational profiles as a patient-specific comparison of the expected 
mutational profile in the absence of an immune response. These comparisons allow for the direct identification 
of changes in the neoantigen profile that are affected by the presence of an intact immune response. Finally, 
after demonstrating immunoediting using known characteristics of immunogenic neoantigens, we used the 
comparison of cSCC in immunocompetent and immunosuppressed patients as an unbiased approach to 
identify characteristics of neoantigens that are immunoedited in immunocompetent, but not immunosuppressed 
patients. Overall, this study demonstrates alterations in the neoantigen landscape in primary cSCC due to the 
immune system and uses the comparison of tumors in immunocompetent and immunosuppressed patients to 
determine characteristics that allow the immune system to recognize neoantigens. 
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Results: 
 
Comparable mutational burden and profile in cSCC from immunocompetent and immunosuppressed 
patients 
 
To isolate the role of immunoediting in cSCC, we first compared the demographics, overall mutational burden, 
and signature between cSCC in immunocompetent and immunosuppressed patients. The distribution of sex, 
stage, and metastatic status was equivalent for immunocompetent and immunosuppressed patients; however, 
immunocompetent patients were significantly older than immunosuppressed patients (Supplementary Figure 
1A-L, Supplementary Table 1). We observed a wide range in mutational burden in the cSCC tumors, as 
previously reported by our group and others,8, 32, 33, 34, 35 but there was no significant difference in the number of 
somatic or missense mutations in the cSCC from immunocompetent and immunosuppressed patients (Figure 
1, Supplementary Table 2). We then calculated the proportion of mutations in each tumor attributable to 
established mutational signatures (Figure 1 and Supplementary Figure 1M). A majority of the tumors had a 
predominant signature of UV-induced mutations. The other predominant mutational signature, especially in low 
mutational burden tumors, was the `clock-like` signature, which consists of mutations known to accumulate in 
human cells at a steady rate over time and is associated with aging.36 Of note, consistent with lower rates of 
sun exposure, all cSCC from the lower extremity and trunk were clustered in the lower mutational burden 
samples with higher rates of `clock-like` signatures. Two out of four patients treated with azathioprine had a 
strong azathioprine signature, consistent with the literature.33, 34 No significant difference in the proportion of 
the signature attributable to UV exposure and clock-like signature was observed between cSCC from 
immunocompetent and immunosuppressed patients. Overall, no significant differences were observed in the 
mutational burden and signature in cSCC from immunocompetent and immunosuppressed patients, supporting 
that differences in the neoantigen profile are unlikely to be attributable to differences in the mutational burden 
and signature. 
 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4991058

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



4 
 

 
 
Supplementary Figure 1: Comparison of age, sex, stage, and metastasis in cSCC from 
immunocompetent and immunosuppressed patients. Summary of demographic characteristics for all 
cSCC samples, segregated by immune status. (A-C) Patient age for (A) samples with WES and RNA-Seq data 
(n=42), (B) samples with RNA-Seq data (n=50), and (C) samples with WES data (n=60). For all boxplots, the 
bold line indicates the median and the upper and lower limits of the boxes indicate the 75th and 25th 
percentiles, respectively. The lower and upper whiskers indicate the minimum and maximum after excluding 
outliers. Dots outside of the box and whiskers indicate outliers. Mean age differences hypothesis testing used a 
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Wilcoxon rank sum test statistic at the 0.05 level of significance. (D-E) Patient sex for (D) samples with WES 
and RNA-Seq data, (E) samples with RNA-Seq data, and (F) samples with WES data. (G-I) Tumor stage for 
(G) samples with WES and RNA-Seq data, (H) samples with RNA-Seq data, (I) samples with WES data. (J-L) 
Metastatic status of (J) samples with WES and RNA-Seq data, (K) samples with RNA-Seq data, and (L) 
samples with WES data. Fisher's exact test statistic, at 0.05 level of significance was used to test differences in 
proportions in panels D-L. P-values > 0.05 are not shown. (M) Mutational signatures deconvoluted with the 
decongstructSigs package from R for comparison to the results from sigminer shown in Figure 1. “Other” 
includes: SBS4, SBS10b, SBS11, SBS12, SBS16, SBS18, SBS19, SBS20, SBS23, SBS24, SBS28, SBS29, 
SBS30, SBS31, SBS36, SBS39, SBS40, SBS42, SBS44, SBS45, SBS46, SBS50, SBS51, SBS52, SBS53, 
SBS54, SBS58, SBS59. For skin site, head/neck includes ear, cheek, forehead, jaw, lip, temple, scalp, and 
periocular; trunk includes shoulder and back; upper extremity includes arm, forearm, and hand; and lower 
extremity includes leg, lower leg, and foot. 
 
 

 
 
Figure 1: Comparable mutational burden and profile in cSCC from immunocompetent and 
immunosuppressed patients. Somatic mutations were identified, and missense mutations were annotated, 
as a subset, in 60 primary cSCC tumors from immunocompetent and immunosuppressed patients. Top: Bar 
graph showing the somatic and missense mutational burdens subset by immune status. Middle: Stacked bar 
graph showing the proportion of the mutations in each tumor attributable to known COSMIC mutational 
signatures. Bottom: Annotations for immune status, sex, age, stage, metastatic status, and skin site of each 
sample. Immunosuppressed patients are annotated for treatment with azathioprine given the known impact of 
azathioprine in the mutational profile of cSCC tumors. For skin site, head/neck includes ear, cheek, forehead, 
jaw, lip, temple, scalp, and periocular; trunk includes shoulder and back; upper extremity includes arm, 
forearm, and hand; and lower extremity includes leg, lower leg, and foot.  
 
Lower clonal mutational burden in immunocompetent patients 
Despite the consistency in the mutational burden and profile of cSCC from immunocompetent and 
immunosuppressed patients, cSCC from immunocompetent patients had a significantly lower mean variant 
allele frequency (VAF; proportion of sequencing reads containing the variant) compared to cSCC from 
immunosuppressed patients (Figure 2A-B). This difference persisted in the cancer cell fraction (CCF; VAF 
adjusted for purity and copy number, Supplementary Figure 2A-B). Furthermore, cSCC from 
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immunocompetent patients had a lower total number of clonal mutations (Figure 2C) and a lower proportion of 
clonal mutations relative to the overall mutational burden (Supplementary Figure 2C-D) than cSCC from 
immunosuppressed patients, tested by two different methods for assigning clonality. Notably, 
immunocompetent patients were significantly older than immunosuppressed patients (Supplementary Figure 
1A); more time to accumulate UV-induced mutations should increase the absolute number of clonal mutations 
in the older immunocompetent patients, contrary to what was observed. When adjusted by age, tumors from 
immunocompetent patients accumulated fewer clonal mutations per year (Supplementary Figure 2E). Together 
these results demonstrate a substantial difference in the observed clonal and subclonal mutational profiles in 
tumors from immunocompetent and immunosuppressed patients.  

To identify the cause of this difference, first, the purity of tumors was evaluated between immunocompetent 
and immunosuppressed patients. A decrease in purity would be expected to decrease the VAF distributions 
since fewer sequencing reads would be attributable to the tumor and able to contain the variant of interest. 
Despite the consistency in the preparation of the tumors for sequencing, tumors from immunocompetent 
patients had a decreased purity compared to tumors from immunosuppressed patients (Figure 2D). The 
difference in purity was inversely correlated with the immune cell infiltrate estimated from immune cell 
deconvolution (Figure 2E), suggesting that the differences in the purity were likely attributable to the 
differences in immune infiltration in cSCC (discussed in more detail later). As expected, the mean VAF was 
significantly associated with purity (Figure 2F); however, the differences in VAF distributions between 
immunosuppressed and immunocompetent patients could not be attributed to purity alone. If only clonal 
mutations were called/detectable, then the expected mean VAF would equal half the empirically measured 
purity (Figure 2F). Thus, a substantially higher number of subclonal mutations must have been present in 
immunocompetent patients to explain the significantly lower mean VAF observed in immunocompetent patients 
compared to immunosuppressed patients.  

Two additional factors that may influence the distribution of clonal and subclonal mutations in the tumor are 1) 
the growth rate of the tumor and 2) immune selective pressure. Tumors with a high growth rate accumulate 
many subclonal mutations at very low frequency compared to slower-growing populations or populations with 
constant population size. Because of this, most variants may remain unique to a small proportion of cells and 
may be undetectable by standard variant-calling pipelines, resulting in a single peak of clonal mutations with a 
frequency equal to half the empirically measured purity (Supplementary Figure 2F). In contrast, for tumors that 
are slowly growing or have a constant population size, we expect a much higher number of detectable 
subclonal mutations (Supplementary Figure 2G), leading to a lower mean VAF. The second factor that may 
influence the distribution of clonal and subclonal mutations is immune selective pressure. Several studies have 
demonstrated that the immune system is more apt to recognize and target neoantigens at higher frequencies 
in the tumor.7, 37, 38, 39 If the immune system selectively targets neoantigens, this would drive down the 
VAF/CCF distributions. To account for the potential effects of both growth rate differences and targeting of 
neoantigens by the immune system on individual patient VAF distributions, we used an Approximate Bayesian 
Computational (ABC) approach for parameter estimation.40 VAF distributions were simulated across a range of 
growth rates and fractions of clonal mutations, using patient-specific purities (Figure 2D) and coverage 
distributions (Supplementary Figure 2H), to find the values of both parameters that best explain the observed 
VAF (Figure 2G, Supplementary Figure 3). The most likely parameter fits for the observed VAF distributions 
had a wide range in growth rates (Figure 2H) and a significantly lower fraction of clonal mutations in 
immunocompetent patients (Figure 2I). Qualitative results were consistent across assumptions of the number 
of cells, the use of relative vs. absolute mutation counts, and the ranges of parameters simulated (Methods). 
These results suggest that, in the presence of immune selective pressure, the tumors had significantly fewer 
clonal neoantigens and lower growth rates than those in immunosuppressed patients.  
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Figure 2: Lower clonal mutational burden in immunocompetent patients. (A) Variant allele frequency 
(VAF) distributions for all mutations from each tumor, colored by immune status (n = 32 immunocompetent, 
n=10 immunosuppressed, tumors with WES and RNA-Seq). Each line represents a tumor with the peak height 
indicating mutation density at specific VAFs. (B) Mean VAF for each tumor, segregated by immune status. (C) 
Number of clonal mutations in each tumor, segregated by immune status. Clonal mutations are defined as 
mutations with a cancer cell fraction (CCF; VAF adjusted for purity and copy number) > 0.75. (D) Tumor purity 
estimates from RNA-Seq gene signatures, segregated by immune status. (E) Scatter plot showing the 
relationship between sample purity and immune infiltration (estimated from xCell), with a fitted linear regression 
(dashed line). (F) Scatter plot of mean VAF versus sample purity. The black dashed line indicates the expected 
relationship between purity and mean VAF, presuming only clonal mutations, whereas the solid black line 
indicates the observed relationship between purity and mean variant allele frequency. Points are colored by 
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immune status. (G-I) VAF distributions were simulated across a range of growth rates and fractions of clonal 
mutations to find the values of both parameters that best explain the observed VAF. Approximate Bayesian 
Computation (ABC) was implemented to select the normalized simulated VAFs that had the best chi-square 
goodness-of-fit statistic between the observed and simulated distributions. (G) Comparison of the observed 
mean VAF to the estimated mean VAF from the models selected using ABC methods. The dotted black line 
indicates the 1:1 correspondence between observed and estimated mean VAFs. (H) Optimized growth rates 
from the estimated VAF distribution results. (I) Optimized estimate of the underlying clonal:subclonal ratio from 
the estimated VAF distribution results (includes both observed subclonal mutations and subclonal mutations 
below the limits of detection for variant calling). For all boxplots, the bold line indicates the median and the 
upper and lower limits of the boxes indicate the 75th and 25th percentiles, respectively. The lower and upper 
whiskers indicate the minimum and maximum after excluding outliers. Dots outside of the box and whiskers 
indicate outliers. Differences in scale parameters for panels B, C, D, H, and I were all tested using a Wilcoxon 
rank sum test at the 0.05 level of significance. 
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Supplementary Figure 2: Additional support for lower clonal mutational burden in immunocompetent 
patients. (A) Cancer cell fraction (CCF; variant allele frequency adjusted for purity and copy number) 
distributions for all mutations from each tumor, colored by immune status (n = 32 immunocompetent, n=10 
immunosuppressed, tumors with WES and RNA-Seq). Each line represents a tumor with the peak height 
indicating mutation density at specific CCFs. (B) Mean CCF for each tumor, segregated by immune status. (C) 
Proportion of clonal mutations (CCF > 0.75) out of all observed mutations, segregated by immune status. (D) 
Proportion of subclonal mutations out of all observed mutations, segregated by immune status. As a 
confirmatory approach, subclonal mutations here are defined as mutations that were significantly lower than a 
purity-adjusted threshold for clonality using a one-sided binomial test. Elsewhere in the manuscript `clonal` and 
`subclonal` are defined by a CCF threshold of 0.75. (E) Comparison of the number of clonal mutations 
(CCF>0.75) divided by the patient's age, segregated by immune status. (F-G) Simulated variant allele 
frequencies (VAFs) with varying growth rates in (F) an exponentially growing population and in (G) a constant 
population size. The remaining simulation parameters are constant in the two scenarios: the number of 
sequenced cells (150,000), the fraction of clonal mutations in the sequenced sample (5%), the number of 
mutations per cell (10), tumor purity (100%), the number of required alternative reads to call a mutation (2), 
and the mean coverage (80) and variance (15) of the sequencing reads. It should be noted that the total 
number of mutations is the same in the two scenarios, but in (F) most variants remain undetectable at very low 
frequency while in (G) most detected mutations are subclonal. (H) Mean sequencing coverage across all 
variants, segregated by immune status. For all boxplots, the bold line indicates the median and the upper and 
lower limits of the boxes indicate the 75th and 25th percentiles, respectively. The lower and upper whiskers 
indicate the minimum and maximum after excluding outliers. Dots outside of the box and whiskers indicate 
outliers. A Wilcoxon rank sum test at the 0.05 level of significance was used to examine scale differences in 
panels B, C, D, and E. 
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Supplementary Figure 3. Comparison of estimated and observed VAF histograms. Overlaid histograms 
of the variant allele frequency (VAF) distributions estimated by the posterior distributions from implementation 
of Approximate Bayesian Computational (ABC) compared to the observed VAF distributions. Tumors from 
immunocompetent patients are shown in yellow with tumors from immunosuppressed patients in blue. Dark 
yellow and blue indicate estimated distributions with light yellow and blue indicating observed distributions.  
 
Immunoediting at the DNA level selectively occurs in immunocompetent patients 
 
To control for non-neoantigen-based immune escape mechanisms, we evaluated the tumors for loss of 
heterozygosity of HLA alleles and mutations in B2M (a subunit of the MHC class I complex, loss of which has 
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been previously implicated in immune evasion).41 HLA alleles were identified in both the tumor and normal 
samples to assess for loss of heterozygosity of HLA alleles within the tumor as previously reported.11 6/32 
immunocompetent and 3/10 immunosuppressed patients had homozygosity of at least one HLA allele unique 
to the tumor sample, suggesting loss of heterozygosity. There was no significant difference in the 
homozygosity of HLA alleles unique to the tumor between immunocompetent and immunosuppressed patients 
(p = 0.66, Fisher’s exact test, Supplementary Table 3). Additionally, no missense, splice-site, or nonsense 
mutations were identified in B2M. Three tumors had mutations in B2M, one in the 3’ untranslated region, one in 
an intronic region, and one on the 5’ flank; however, expression of B2M at an mRNA level was maintained in 
these tumors. Therefore, all patients were considered subject to neoantigen-based immunoediting, but 
prediction of binding neoantigens was restricted to HLA alleles maintained in the tumor since neoantigens 
specific to lost HLA alleles should not be subject to the same immune-mediated selective pressure. 
 
To explore whether the distribution of clonal and subclonal mutations was influenced by pressure from the 
immune system, we compared the predicted neoantigen:MHC class I binding since MHC binding has 
consistently been identified as a key characteristic of neoantigen immunogenicity.9, 15, 17, 19, 20, 42 One possibility 
is that, in an immunocompetent setting, MHC class I binding neoantigens would be recognized and eliminated 
from the population, leading to a relatively lower proportion of binding neoantigens in immunocompetent 
patients. Since each patient has a different set of HLA alleles and some individuals have fewer alleles due to 
the homozygosity of an HLA allele, cross-patient comparisons may be influenced by many factors. Therefore, 
to set a baseline for the proportion of neoantigens expected to bind the set of patient-specific HLA alleles in the 
absence of immune-mediated selection, 100 in silico mutational profiles were generated for each patient. In 
silico mutational profiles were generated using the trinucleotide-aware mutation spectrum and the inferred 
mutability of each gene based on the density of synonymous mutations (Supplementary Figure 4). The 
proportion of binding neoantigens was calculated for each set of in silico mutations and averaged across 100 
iterations. Subsequently, the observed proportion of binding neoantigens was adjusted by the expected 
proportion of binding neoantigens from the in silico mutations. There were no obvious differences in the 
proportion of binding neoantigens observed between the overall in silico and true mutations for either 
immunocompetent or immunosuppressed patients, as demonstrated by a ratio of one across both groups 
(Figure 3A-B). Therefore, we concluded that the proportion of binding neoantigens, including both clonal and 
subclonal neoantigens, was not different than expected given the mutational landscape. 
 
Alternatively, the strength of the immune response may be a function of the frequency of the neoantigen in the 
population. To examine this research hypothesis, we compared the proportion of binding neoantigens between 
clonal and subclonal neoantigens. We found that clonal neoantigens in cSCC from immunocompetent patients 
had a significantly lower proportion of neoantigens predicted to bind MHC class I compared to subclonal 
neoantigens from the same patient (Figure 3A, Supplementary Table 4). No difference in the fraction of binding 
neoantigens was observed in the clonal and subclonal neoantigens in immunosuppressed patients (Figure 3B), 
supporting that the observed differences are attributable to immune pressure. As an additional negative 
control, we calculated the binding for all patient neoantigens to an equal number of random, non-patient HLA 
alleles. To account for the overlap in peptides that bind multiple alleles, only neoantigens that bind uniquely to 
non-patient HLA alleles were considered. There was no apparent difference in the proportion of the clonal and 
subclonal neoantigen populations predicted to bind to only non-patient HLA alleles in either immunocompetent 
or immunosuppressed patients (Figure 3C). Together, these data demonstrate a relative decrease in binding 
neoantigens among clonal neoantigens compared to subclonal neoantigens that only occur in 
immunocompetent patients, supporting the role of the immune system in shaping the neoantigen profile in the 
tumor. 
 
One potential mechanism for the decrease in clonal binding neoantigens would be the loss of clonal 
neoantigens through copy number alterations. To test whether this was a likely mechanism, we tested the 
proportion of binding neoantigens in regions with and without copy number alterations and found no significant 
difference in either immunocompetent or immunosuppressed patients (Figure 3D). Thus, immunogenic 
neoantigens are prevented from becoming clonal during tumorigenesis or eliminated prior to tumorigenesis, 
rather than first becoming clonal and later being removed by loss of heterozygosity or downregulated by 
duplication of the non-mutated alleles. 
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We then sought to determine whether the observed changes in the clonal binding ratio are likely to impact the 
overall tumor recognition. Therefore, we compared the maximum immunogenicity of clonal and subclonal 
neoantigens in the cSCC from immunocompetent and immunosuppressed patients. We calculated the 
immunogenicity of each neoantigen using the NeoScore, which combines characteristics of the 
neoantigen:MHC class I binding interaction with mRNA expression into an overall immunogenicity score.15 We 
then compared the NeoScore of the most immunogenic neoantigen (maximum NeoScore) between clonal and 
subclonal neoantigens in immunocompetent and immunosuppressed patients, because a high maximum 
NeoScore has been previously associated with improved response to immune checkpoint blockade.15 
Subclonal neoantigens had a higher maximum NeoScore compared to clonal neoantigens in 
immunocompetent patients, whereas the clonal neoantigens had a higher maximum NeoScore compared to 
subclonal neoantigens in immunosuppressed patients (Figure 3E). Differences in the maximum NeoScore may 
be due to the prevalence of clonal and subclonal neoantigens in immunocompetent vs. immunosuppressed 
patients, as the larger subclonal population in immunocompetent patients increases the chances of finding the 
most immunogenic neoantigen in the subclonal population. Despite this caveat, these data demonstrate that 
the decrease in binding neoantigens in the clonal population decreases the immunogenicity of the clonal 
neoantigens in cSCC from immunocompetent patients whereas in cSCC from immunosuppressed patients the 
immunogenicity is retained in the clonal neoantigens.  
 
In addition to changes in the clonal profile of the tumor, previous work has suggested that neoantigens can 
accumulate in low-expressing regions of the genome as a mechanism of immune escape, either through 
downregulation of genes with neoantigens or preferential elimination of cells with high expression of 
neoantigens.11, 12, 43, 44 Therefore, we modified a prior approach12 to test whether neoantigens were enriched at 
low expression compared to what would be expected from the in silico mutations. Expression values were 
numerically ranked from low to high and enrichment scores were calculated as the difference in the average 
sum of the ranks for binding and non-binding neoantigens individually, where a higher value indicates more 
enrichment of binding neoantigens at low expression. Consistent with previous work,12 positive enrichment 
scores were observed across the majority of the tumors (Figure 3F). However, contrary to what might be 
expected if the enrichment of binding neoantigens at low expression was immune-mediated, the observed 
enrichment was less than expected given the mutational landscape alone (Figure 3F). This observation is 
consistent with a prior report that the trinucleotide mutational context derived from UV exposure biases towards 
more binding mutations in lowly expressed genes.45, 46 Additionally, there was no significant difference in the 
enrichment scores for immunocompetent and immunosuppressed patients, providing further evidence that the 
enrichment of binding neoantigens at low expression is not attributable to immune-mediated selection. Overall, 
we did not detect a signature of RNA-level immunoediting in cSCC from immunocompetent patients. 
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Figure 3: Immunoediting at the DNA level in cSCC selectively occurs in immunocompetent patients. (A-
B) Ratio of the observed proportion of binding neoantigens (dissociation constant < 500 nM) over the expected 
proportion of binding neoantigens, calculated as the average proportion of binding neoantigens from 100 
iterations of in silico mutations. The ratio is shown across all mutations, clonal mutations (Cancer Cell Fraction, 
CCF > 0.75), and subclonal mutations (CCF < 0.75). (A) Tumors from immunocompetent patients (n=32, 
tumors with WES and RNA-Seq). (B) Tumors from immunosuppressed patients (n=10, tumors with WES and 
RNA-Seq). (C) Comparison of the ratio of binding to total neoantigens with predicted binding to random, non-
patient HLA alleles, stratified by immune status. (D) The proportion of binding neoantigens in regions with copy 
number alterations compared to regions without copy number alterations, stratified by immune status. (E) 
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Comparison of the maximum NeoScore (linear combination of neoantigen:MHC dissociation constant, 
neoantigen:MHC binding stability, and mRNA expression) in clonal and subclonal neoantigens, segregated by 
immune status. (F) Comparison of the enrichment of neoantigens at low mRNA expression for neoantigens 
from in silico mutations compared to the enrichment of neoantigens at low mRNA expression for neoantigens 
from true patient mutations. Higher enrichment scores indicate that binding neoantigens are enriched at low 
expression. For all boxplots, the bold line indicates the median and the upper and lower limits of the boxes 
indicate the 75th and 25th percentiles, respectively. The lower and upper whiskers indicate the minimum and 
maximum after excluding outliers. Dots outside of the box and whiskers indicate outliers. The paired signed 
rank sum test statistic was used for all comparisons in panels A-F. No significant differences were observed for 
panels B, C, and F. 
 

 
 
Supplementary Figure 4: Generation of in silico mutations. (A) Relationship between the normalized 
mutation spectrum in immunosuppressed and immunocompetent patients, (B) histogram with the inferred gene 
mutability per gene inferred from synonymous (Syn) mutations, (C) relationship between the observed and 
expected number of nonsynonymous (NSyn) mutations considering only sequence mutability, and (D) 
relationship between the observed and expected number of nonsynonymous mutations considering both 
sequence mutability and gene mutability. In C and D, to avoid overplotting, individual points were binned into 
rectangles and the density of the points was mapped to the fill color of the rectangles.  
 
Increased CD8+ T cell and T regulatory cell infiltration in cSCC from immunocompetent patients. 
Next, we compared the immune cell populations within the tumor microenvironment of cSCC from 
immunocompetent and immunosuppressed patients. Unsupervised hierarchical clustering of deconvolution 
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data from quanTIseq identified high and low infiltrate groups that were visually separated by CD8+ T cells and 
T regulatory (Treg) cells (Figure 4A). The high infiltrate group was predominated by immunocompetent 
patients, which was reflected by an overall increase in CD8+ T cell and Treg cell infiltration in cSCC from 
immunocompetent compared to immunosuppressed patients (Figure 4B-C). As confirmation, we performed 
immune cell deconvolution with two additional, independent software (Supplementary Figure 5A-B). The high 
infiltration group from quanTIseq was used as an annotation across all three heatmaps, demonstrating a high 
degree of concordance in the samples identified as having high immune infiltrate. An increase in CD8+ T cells 
and Treg cells was observed in the additional deconvolution approaches (Supplementary Figure 5C-E, note 
MCP counter does not include a prediction of Treg cells). Consistent with higher T cell infiltration, the 
cytotoxicity score calculated by MCP counter was significantly increased in immunocompetent compared to 
immunosuppressed patients (Supplementary Figure 5F), reflecting increased CD8+ T cell activity. To further 
characterize the immune microenvironment of cSCC from immunocompetent and immunosuppressed patients, 
we compared the expression of immune checkpoint molecules CD274 (encodes PD-L1), PDCD1, CTLA4, and 
LAG3, and markers of cytolytic activity GZMB and PRF1 in cSCC from immunocompetent and 
immunosuppressed patients (Figure 4D-I, Supplementary Table 5). We found that consistent with increased 
CD8+ T cell and Treg cell infiltration, cSCC from immunocompetent patients had increased expression of 
markers of cytotoxicity and exhaustion. Overall, the increase in T cell infiltration and markers of cytotoxicity and 
exhaustion support that the cSCC from immunocompetent patients are under increased surveillance. 
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Figure 4: Increased CD8+ T cell and T regulatory cell infiltration in cSCC from immunocompetent 
patients. (A-C) Immune cell deconvolution of cSCC from 35 immunocompetent and 15 immunosuppressed 
patients using quanTiseq. (A) Heatmap illustrating the frequencies of immune cell types designated as high vs. 
low immune cell infiltration by hierarchical clustering. Heatmap is annotated with immune status, sex, age, 
stage, metastatic status, and skin site of each sample. For skin site, head/neck includes ear, cheek, forehead, 
jaw, lip, temple, scalp, and periocular; trunk includes back; upper extremity (UE) includes arm, forearm, and 
hand; and lower extremity (LE) includes leg, lower leg, and foot. (B-C) Boxplots comparing the expression of 
(B) CD8+ T cells and (C) T regulatory (Treg) cells between immunocompetent and immunosuppressed 
patients. from quanTIseq. (D-I) Boxplots comparing the expression of immune checkpoint molecules and 
markers of cytolytic activity in cSCC from immunocompetent and immunosuppressed patients. (D) CD274 
(encodes PD-L1), (E) PDCD1, (F) CTLA4, (G) LAG3, (H) GZMB, (I) PRF1. For all boxplots, the bold line 
indicates the median and the upper and lower limits of the boxes indicate the 75th and 25th percentiles, 
respectively. The lower and upper whiskers indicate the minimum and maximum after excluding outliers. Dots 
outside of the box and whiskers indicate outliers. A Wilcoxon rank sum test statistic was used to examine scale 
differences in panels B-I. 
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Supplementary Figure 5: Additional support for increased CD8+ T cell and T regulatory cell infiltration 
in cSCC from immunocompetent patients. Immune cell deconvolution of cSCC from 35 immunocompetent 
and 15 immunosuppressed patients. Heatmaps illustrating the frequencies of immune cell types from (A) xCell 
(cell types were included if they had a score of at least 0.05 in at least 10 samples) and (B) MCP Counter. 
Clusters are designated as high vs. low immune cell infiltration using the clusters derived from quanTIseq 
deconvolution in Figure 4. Heatmaps are annotated with immune status, sex, age, stage, metastatic status, 
and skin site of each sample. For skin site, head/neck includes ear, cheek, forehead, jaw, lip, temple, scalp, 
and periocular; trunk includes back; upper extremity (UE) includes arm, forearm, and hand; and lower 
extremity (LE) includes leg, lower leg, and foot. (C-F) Boxplots comparing the proportion of specific cell 
populations between immunocompetent and immunosuppressed patients. (C) CD8+ T cells from xCell, (D) 
Treg cells from xCell, (E) CD8+ T cells from MCP Counter, (F) Cytotoxicity scores from MCP Counter. For all 
boxplots, the bold line indicates the median and the upper and lower limits of the boxes indicate the 75th and 
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25th percentiles, respectively. The lower and upper whiskers indicate the minimum and maximum after 
excluding outliers. Dots outside of the box and whiskers indicate outliers. A Wilcoxon rank sum test statistic 
was used to examine scale differences in panels C-F.  
 
Predominant increase in exhausted CD8+ T cells in cSCC from immunocompetent patients 
 
To further examine differences in immune infiltrate in immunocompetent and immunosuppressed patients, a 
publicly available single-cell RNA sequencing (scRNA-Seq) and T cell receptor sequencing (TCRseq) dataset47 
was obtained for tumor-infiltrating CD8+ T cells from cSCC from immunocompetent and immunosuppressed 
patients. Confirming the findings from bulk RNA sequencing, cSCC from immunocompetent patients had 
greater CD8+ T cell infiltration (Figure 5A) and expansion of CD8+ T cell clones (Figure 5B) compared to 
cSCC from immunosuppressed patients. We performed unsupervised clustering followed by annotation of the 
clusters by comparing them to an atlas of tumor-infiltrating T cells48 (Figure 5C-F). As further confirmation of 
the annotation of the CD8+ T cell clusters, we performed pseudotime analysis and demonstrated a progression 
from naïve T cells, to central and effector memory T cells, and then to exhausted phenotypes, consistent with 
the known trajectory of CD8+ T cells (Figure 5G-H). A very low number of mucosal-associated invariant CD8+ 
T cells (MAIT) cells were identified, and they were annotated at a similar pseudotime as effector memory cells, 
despite not being a true part of the progression of CD8+ T cells. Past studies have noted that MAIT cells 
frequently cluster with effector memory cells due to similarities in their transcriptional profile.49 When comparing 
the phenotypes of the CD8+ T cells between immunocompetent and immunosuppressed patients, there was 
no difference in the overall proportion of CD8+ T cells in each phenotype (Figure 5C-D). However, when we 
restricted CD8+ T cells from expanded clones, which are anticipated to be enriched for tumor-specific T cells, 
we demonstrated a significant increase in the exhausted CD8+ T cell phenotype in immunocompetent 
compared to immunosuppressed patients (Figure 5E-F). The predominance of tumor-infiltrating CD8+ T cells 
with an exhausted phenotype in immunocompetent patients is consistent with the persistence of binding 
neoantigens in the subclonal population in the tumor. 
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Figure 5: Predominant increase in exhausted CD8+ T cells in cSCC from immunocompetent patients. 
scRNA-Seq and TCRseq data from 5 cSCC tumors from 5 immunocompetent patients, and 6 tumors from 5 
immunocompetent patients. (A) Quantification of the total CD8+ T cell infiltrates in immunocompetent and 
immunosuppressed patients. (B) The density of clonotypes at each clonotype abundance was compared using 
a Wilcoxon rank sum test. (C) UMAP projection of all CD8+ T cells in immunocompetent and 
immunosuppressed patients. Clusters are annotated based on a standard atlas of tumor-infiltrating 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4991058

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



20 
 

lymphocytes. Naïve; naïve CD8+ T cells, MAIT; mucosal-associated invariant CD8+ T cells, CM; central 
memory CD8+ T cells, EM; effector memory CD8+ T cells, TEMRA; terminally differentiated effector memory 
CD8+ T cells, TEX; exhausted CD8+ T cells; TPEX; progenitor exhausted CD8+ T cells. (D) Barplot 
quantifying the percentage of CD8+ T cells belonging to each phenotype. (E) UMAP projection restricted to 
CD8+ T cells from expanded clones (>1%). (F) Bar graph quantifying the percentage of CD8+ T cells from 
expanded clones belonging to each phenotype. (G-H) Pseudotime analysis of CD8+ T cell clusters. (A) UMAP 
projection colored by pseudotime. (B) Boxplot of clusters, ordered by pseudotime. Naïve; naïve CD8+ T cells, 
CM; central memory CD8+ T cells, MAIT; mucosal-associated invariant CD8+ T cells, EM; effector memory 
CD8+ T cells, TPEX; progenitor exhausted CD8+ T cells, TEX; exhausted CD8+ T cells, TEMRA; terminally 
differentiated effector memory CD8+ T cells. For all boxplots, the bold line indicates the median and the upper 
and lower limits of the boxes indicate the 75th and 25th percentiles, respectively. The lower and upper 
whiskers indicate the minimum and maximum after excluding outliers. Dots outside of the box and whiskers 
indicate outliers. 
 
Neoantigens with high differential agretopic index enriched in subclonal neoantigens 
 
Given the evidence of immunoediting in cSCC from immunocompetent patients, the comparison of clonal and 
subclonal neoantigens in immunocompetent and immunosuppressed patients was applied as an unbiased 
approach to identifying neoantigen characteristics associated with an immune response. First, the neoantigens 
from all patients were grouped and annotated with a set of characteristics involved with antigen processing and 
presentation and foreignness from self (Supplementary Table 4). For processing and presentation, the mRNA 
level expression of the gene encoding the peptide, the proteasomal cleavage potential of the peptide, and the 
TAP transport potential of the peptide were considered.50 For binding, the dissociation constant,42, 51 and 
stability52 of the neoantigen:MHC class I complex were considered since those have previously been 
demonstrated to provide separate information for prioritization of immunogenic neoantigens.15 Finally, for 
foreignness from self, peptides can differ either in the binding to the MHC class I molecule or in the interaction 
with the T cell receptor (TCR). The difference in the binding to the MHC class I molecule was calculated as the 
differential agretopic index (DAI; ratio of the dissociation constant of the wild-type to the mutant peptide).25, 26 
For the difference in the TCR recognition, the cross-reactivity distance was calculated which quantifies the 
likelihood that 
 a T cell would be able to discriminate the mutation from the wild-type peptide based on the position of the 
amino acid change and the change in the size and hydrophobicity of the new amino acid relative to the original 
amino acid.9 
 
Next, we used k-means clustering to identify discrete clusters of neoantigens with similar sets of characteristics 
(Figure 6A). The optimal number of clusters was determined as the number that maximized the gap statistic, 
which compares the intra-cluster variation (sums-of-squares) under several choices of the number of clusters 
to the sums-of-squares under the null reference distribution (e.g., uniform distribution); the final number of 
clusters is the number that maximizes the difference from the null reference (Supplementary Figure 6).53 The 
fraction of neoantigens attributable to each cluster was compared between the clonal and subclonal 
neoantigens in immunocompetent and immunosuppressed patients. Cluster 2, which is uniquely defined by a 
high DAI, was enriched in subclonal neoantigens in cSCC from immunocompetent, but not 
immunosuppressed, patients (Figure 6B). Of note, low dissociation constants and high stability have previously 
been applied to prioritize immunogenic neoantigens;15, 19, 42 however, cluster 7, which was defined by lower 
dissociation constants and greater predicted binding stability than cluster 2, showed no enrichment in 
subclonal neoantigens from immunocompetent patients (Figure 6C). Both cluster 2 and 7 were characterized 
by an average dissociation constant well below the standard 500 nM threshold for binding (127.78 nM C2, 
45.74 nM C7), but cluster 2 was characterized by neoantigens with consistently high DAI scores (Figure 6D-E). 
These findings suggest that, out of the characteristics evaluated, DAI was the predominant characteristic of 
neoantigens underrepresented in the clonal neoantigen population, suggesting that DAI is associated with an 
effective T cell response to the neoantigen. 
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Figure 6: Differential agretopic index identified as a central characteristic in defining immunogenic 
neoantigens in unbiased assessment of all neoantigens. (A) Clustering analysis across all predicted 
neoantigen characteristics for all neoantigens from immunocompetent and immunosuppressed patients (n = 32 
immunocompetent, n=10 immunosuppressed, tumors with WES and RNA-Seq). (B-C) Boxplots of 
comparisons of the proportion of selected clusters of neoantigens in the clonal and subclonal populations from 
immunocompetent patients. The bold line indicates the median and the upper and lower limits of the boxes 
indicate the 75th and 25th percentiles, respectively. The lower and upper whiskers indicate the minimum and 
maximum after excluding outliers. Dots outside of the box and whiskers indicate outliers. Differences in scale 
were tested using the signed rank test statistic for within-patient comparisons. (B) The proportion of cluster 2 
neoantigens in the clonal and subclonal populations from immunocompetent and immunosuppressed patients. 
(C) Proportion of cluster 7 neoantigens in the clonal and subclonal populations from immunocompetent and 
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immunosuppressed patients. (D-E) Violin plots of select characteristics included in the overall clustering 
analysis, separated by cluster. The width of each curve demonstrates the density of the data points at that 
value. (D) Neoantigen:MHC class I dissociation constant, log base 10 transformed. (E) Differential agretopic 
index calculated as the ratio of the dissociation constant for the normal peptide compared to the neoantigen, 
log base 10 transformed.  
 

 
 
Supplementary Figure 6: Determination of optimal number of clusters with gap statistic. (A) K-means 
clustering was performed with 1-10 groups and the gap statistic was calculated for each. The optimal number 
of clusters was selected as the one that maximized the gap statistic. (B-F) Violin plot of each characteristic 
included in the overall clustering analysis, separated by cluster. The width of each curve demonstrates the 
density of the data points at that value. (B) Cross-reactivity distance between the mutant and wild-type 
peptides, (C) mRNA-level expression, log base 10 transformed, (D) TAP transport potential from netCTLpan, 
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(E) proteasomal cleavage potential from netCTLpan, (F) neoantigen:MHC stability calculated with 
netMHCstab, log base 10 transformed.  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4991058

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



24 
 

Discussion: 
 
While evidence consistent with immunoediting has been demonstrated in multiple associative studies, a central 
challenge in the field has been determining to what extent changes in the neoantigen profile are attributable to 
immune-mediated selection. This is the first immunoediting study, to our knowledge, to use the comparison of 
tumors from immunocompetent and immunosuppressed patients to evaluate the extent to which changes in 
the neoantigen profile are attributable to immune activity. This work demonstrated 1) DNA-level immunoediting 
in cSCC from immunocompetent patients that was not detectable in immunosuppressed patients, 2) 
exhaustion of expanded CD8+ T cells in tumors from immunocompetent patients, and 3) the importance of DAI 
in determining which neoantigens are immunoedited in immunocompetent patients.  
 
DNA-level immunoediting was demonstrated first through a decrease in the VAF distribution and a lower 
number of clonal mutations in immunocompetent compared to immunosuppressed patients. The impact of the 
immune system on this shift was further supported by the lower proportion of binding neoantigens in the clonal 
population in immunocompetent patients. These findings are consistent with multiple reports that the clonal 
mutational burden is more strongly associated with response to immune checkpoint inhibition than the total 
mutational burden, suggesting that the immune system is more apt to recognize and respond to neoantigens 
above a certain frequency.37, 38, 39, 54 Additionally, previous work showed a lower VAF distribution in 
autochthonous tumors from immunocompetent mice compared to immunocompromised mice.7 Consistent with 
a previous report,46 we demonstrate no overall decrease in the proportion of binding neoantigens compared to 
what is expected from the in silico mutational profiles. However, we demonstrate the importance of considering 
neoantigens from clonal and subclonal populations. Our data provides strong evidence of the role of the 
immune system in shaping the clonal mutational profile in primary tumors in immunocompetent patients. 
 
One question arising from these findings is the mechanism by which the immune system shapes the clonal 
neoantigen burden in immunocompetent patients. Three possible mechanisms are 1) survivorship bias, 2) 
immunoediting of new subclonal mutations after tumorigenesis, and 3) partial elimination of clonal mutations. 
The first hypothesis is that there is immunoediting before tumorigenesis, leading to a survivorship bias. Under 
this hypothesis, if a tumor driver mutation occurs in a cell with many binding neoantigens, all its descendants 
will be eliminated by the immune system. Therefore, the only tumors that become clinically detectable are 
those with a lower clonal mutational burden that is less recognizable to the immune system. This hypothesis is 
consistent with the lower number of clonal mutations per year and the mutational signature of the tumors which 
is predominantly attributable to UV exposure (and therefore likely to accumulate over time). However, it does 
not offer a rationale for the increased proportion of observed binding neoantigens in the subclonal population 
relative to the expected proportion using in silico mutations. Secondly, immunoediting could occur on new 
mutations after tumorigenesis, preventing them from reaching a high frequency in the tumor. In this case, a 
binding neoantigen that arose after tumorigenesis would be prevented from becoming high-frequency through 
an active immune response, restricting clonal binding neoantigens. To explain the lower number of clonal 
mutations per year under this hypothesis, a significant number of clonal (or apparently clonal) mutations in our 
tumor samples must have occurred after tumorigenesis. Importantly, these mechanisms are not mutually 
exclusive, therefore, we consider that it is most likely that the immunoediting observed is attributable to a 
combination of survivorship bias and restriction of new mutations that encode binding neoantigens from 
becoming clonal. Finally, it is possible that previously clonal mutations might be targeted by the immune 
system and partially removed, leaving a remnant in the subclonal population. While this would explain the 
decrease in the proportion of binding neoantigens in the clonal population and the lower number of clonal 
mutations per year in immunocompetent patients, the change from a clonal mutation to a subclonal mutation 
would require either back-mutation or changes of copy number of an allele, both of which are unlikely to occur 
with enough frequency to drive the difference in clonal mutations. Additionally, there was not an increase in the 
proportion of binding neoantigens in regions with copy number alterations as would be expected if this were a 
dominant mechanism. Therefore, while it is feasible that this mechanism could contribute, it is unlikely to be a 
dominant cause of the immunoediting detected through this study. 
 
With regards to immune infiltration, there was a predominant increase in the proportion of expanded CD8+ T 
cell clones with markers of T cell exhaustion in immunocompetent patients. We hypothesize that T cell 
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exhaustion could explain why the observed immunoediting is in the accumulation of binding neoantigens in the 
subclonal population rather than the complete elimination of binding neoantigens. In the setting of chronic 
neoantigen exposure, the CD8+ T cell response can become exhausted, leading to decreased immune 
surveillance over time.55 This is also consistent with the work from Rosenthal et al. demonstrating that the 
signal of immunoediting was decreased in subclonal neoantigens, particularly in tumors that no longer had high 
immune infiltration, suggesting that the immune response may have decreased over time.11 Of note, a few 
mouse and human studies have demonstrated complete genetic loss of neoantigens, which contrasts with the 
results presented here.10, 56 Several possible explanations exist for the discrepancy in the results. In the case of 
the mouse models, differences have previously been observed in the immune response to transplantable and 
autochthonous tumors,57 and the transplantable mouse model may not fully replicate the immune reaction to 
an autochthonous tumor. In human disease, the loss of neoantigens was established following immunotherapy, 
which could decrease CD8+ T cell exhaustion and lead to a more complete immune response to a given 
neoantigen. Additionally, both the mouse and human studies referenced here track the fate of a small number 
of neoantigens. Elimination of a few neoantigens may not impact the profile of the whole tumor sufficiently to 
be detected in this study design. Further studies should explore the extent to which complete elimination of 
immunogenic neoantigens compared to restriction of immunogenic neoantigens from the clonal population is 
observed in repeated sampling of a single tumor. 
 
Finally, this work applied the comparison of clonal and subclonal neoantigens in immunocompetent and 
immunosuppressed patients to identify characteristics of neoantigens associated with immunoediting. Through 
this approach, we find that, of the characteristics tested, the difference in the MHC class I binding affinity 
between the mutated and unmutated peptides (measured by the statistic DAI) was the most important for 
identifying neoantigens enriched in the subclonal population in immunocompetent patients. Of note, work to 
date has been inconsistent on the role of DAI in predicting immunogenic neoantigens in human disease.15, 17, 19, 

58 This inconsistency may be attributable to the training of models on sets of neoantigens that were prioritized 
in silico on the binding affinity of the neoantigen:MHC class I before testing.14, 15, 16, 17, 18, 19, 20 Prioritization of the 
neoantigens with the highest binding affinity increases the chances of prioritizing neoantigens where the 
mutated peptide binds better, which may bias against the identification of DAI as a characteristic that 
distinguishes immunogenic from non-immunogenic neoantigens. When unbiased testing was performed in a 
mouse model, DAI was also identified as a key characteristic of immunogenic neoantigens.25  
 
Our work supports that immunoediting in human primary tumors occurs through the suppression of clonal 
mutations at the DNA level and the importance of DAI as a characteristic of the immunoedited neoantigens. 
These findings suggest that clonality and DAI may be critical characteristics in improving the selection of 
immunogenic neoantigens for inclusion in personalized neoantigen vaccines. 
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Figure 2, and Supplementary Figure 2. 
Supplementary Table 3. HLA types related to statements in the text. 
Supplementary Table 4. Mutations annotated with neoantigen characteristics, related to Figure 3, Figure 6, and 
Supplementary Figure 6. 
Supplementary Table 5. Expression data for all samples, related to Figure 4 and Supplementary Figure 5. 
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STAR METHODS 
 
RESOURCE AVAILABILITY 
 
Lead contact 
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, 
Karen Taraszka Hastings (khasting@arizona.edu) 
 
Materials available 
This study did not generate new unique reagents. 
 
Data and code availability 
This paper analyzes existing data from our group and others. The accession numbers for the datasets are 
listed in the key resources table. All original code has been deposited in GitHub and is publicly available as of 
the date of publication. Any additional information required to reanalyze the data reported in this paper is 
available from the lead contact upon request. 
 
METHOD DETAILS 
 
cSCC samples 
This study analyzed WES and/or RNA-Seq data previously obtained by our collaborative team for a total of 71 
patients with cSCC (46 immunocompetent and 25 immunosuppressed). Primary tumors and normal tissue 
controls were manually macrodissected from serial sections, guided by the annotations of a board-certified 
dermatologist. Specimens were prepared for sequencing as described.59 WES was performed with an average 
coverage of approximately 80x and RNA-Seq with approximately 60 million reads per sample. 
Immunosuppression was due to either treatment following solid organ transplantation (renal, lung, or heart, 
n=19), for myasthenia gravis (n=3), or for severe asthma (n=1, WES only). Immunosuppressed patients were 
treated with azathioprine, tacrolimus, prednisone, sirolimus, mycophenolate mofetil, cyclosporin, or a 
combination of the aforementioned medications. Two patients considered immunosuppressed in the prior 
study59 were excluded because the treatment was local (i.e. ophthalmic cyclosporine for CLL) or the treatment 
inhibited only the Th2 response (dupilumab for Crohns disease). One patient with only RNA-Seq data was 
excluded due to an unknown metastatic status. The resulting sample sizes and full demographic data are 
provided in Supplementary Table 1.  
 
Mutational burden and signature 
Somatic variants were identified using the methods described in the Genome_GPA v5.0.3 algorithm (formerly 
called TREAT).60 Briefly, read mapping was performed to the GRCh38 genome using bwa-mem (v0.7.10),61 
realignment was performed with GATK (v.3.4-46),62 and somatic variants were identified with a combination of 
Mutect2 and Strelka2.62, 63 Consistent with previous work, only variants identified by both GATK Mutect2 and 
Strelka2 were kept, to ensure high fidelity calls.15 Variants were filtered using the standard filters from GATK 
Mutect2. Mutations were annotated using the Variant Effects Predictor (VEP) from Ensmebl with cache version 
109.64 The Downstream plugin was applied for Vep to account for any downstream effects of frameshift 
variants on the protein sequence. VEP-annotated variant call files were converted to MAF files with MAF tools 
for efficient downstream mutational analyses.65 Mutational signatures were deconvoluted with two different 
approaches, using the decongstructSigs (v.1.9.0)66 and the sigminer (v.2.3.1)67 packages from R.  
 
Read count quantification 
Processing of the RNA-Seq paired-end reads was performed with the Mayo RNA-Seq bioinformatics pipeline, 
MAP-RSeq (v.3.1.4).68 RNA-Seq data was aligned to the GRCh38 reference genome using STAR.69 Gene-
level read count quantification was performed with Subread geneCounts function to obtain raw reads 
(Supplementary Table 5).70, 71 Read counts were transformed to transcripts per million (TPM) for downstream 
analyses. 
 
Clonality and heterogeneity 
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VAFs were obtained from GATK Mutect2 during the identification of somatic variants. To better compare the 
heterogeneity of the tumors, CCFs were calculated from the VAF using the following equation:  
 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝑉𝑉𝑉𝑉𝐶𝐶
𝑃𝑃

 𝑥𝑥 (𝐶𝐶𝐶𝐶𝑣𝑣 ∗ 𝑃𝑃 +  𝐶𝐶𝐶𝐶𝑛𝑛 ∗ (1 − 𝑃𝑃)) 

 
Where P is the purity, calculated from the RNA-Seq data with Puree,72 the CNv is the copy number of the 
variant allele calculated with CNVkit, and CNn is the copy number of the normal allele calculated with CNVkit.73 
Somatic variants with a CCF greater than 1 were set to 1 to more accurately reflect the percent of the tumor 
containing a given mutation. The number of clonal neoantigens was quantified as the number of neoantigens 
with a CCF > 0.75, consistent with a prior study.7 Given the uncertainty involved in defining neoantigens as 
subclonal or clonal based on a CCF cutoff, we performed additional testing to support that the subclonal and 
clonal neoantigens are correctly assigned. A one-sided binomial test was performed to assign neoantigens as 
subclonal only if they had a VAF significantly lower than the purity-adjusted VAF threshold for clonality.  
 
Inference of growth rate and clonal ratio 
 
We lack analytical expectations for the shape of the VAF under different models of tumor growth. Fortunately, 
we have analytical expectations for a closely related summary statistic well-known in population genetics, the 
site frequency spectrum (SFS). The SFS is a histogram showing the distribution of allele frequencies among 
loci within a sample. It summarizes the frequencies of derived alleles across the sequenced haplotypes.74 
Under the standard neutral model (SNM), that is, a model of constant population size with no selection,75 the 
SFS decays as 1/x^1, where x is the number of haplotype copies in a sample of size of n haplotypes (x ranges 
from 1, mutations present only in one haplotype, to n, mutations present in all haplotypes copies in the 
sample). In contrast, under exponential growth the SFS decays as 1/x^2.76, 77 This results in a faster decay of 
the SFS under population expansion and an excess of low-frequency variants relative to the SNM.  
 
Unlike the SFS, the sample size or number of sequenced haplotypes (or cells/individuals) per locus in a given 
VAF is not visually readily apparent. To generate a VAF, a large pool or sample of diploid cells (at least 1,667 
cells in this study) is used, rather than sequencing a predefined number of individuals/cells as in the 
construction of an SFS.  However, the average sequencing coverage (~80X in this study) is substantially 
smaller than the pool or sample size. This is equivalent to subsampling with replacement from large SFS to a 
more modest sample size. The coverage also varies across different sites, adding more uncertainty to the 
recovered allele frequency distribution. The VAF is therefore a noisy version of the SFS, and it is particularly 
underpowered for the detection of low-frequency mutations. Moreover, in tumor VAFs, mutations tend to occur 
only once in a chromosome copy, so the highest achievable allele frequency in the sample is not n but n/2. To 
circumvent these peculiarities, we simulate the entire sequencing-calling-filtering process used to generate our 
tumor VAFs under the SNM and a model of an exponentially growing population. To account for intermediate 
"growth rates", we allow the exponent to vary between 1 and 2 (see below).  
 
Three simulation parameters were held constant across patients:  

● Number of sequenced cells present in the sample (n = 1,667). The sequencing protocol requires 10 
nanograms to 1 microgram of DNA. Since a diploid human cell contains about 6 picograms (pg) of 
DNA, this is the lower limit of sequenced cells. This lower limit is more than an order of magnitude 
larger than the average coverage (~80X), making it unlikely, but not impossible, that the same piece of 
chromosome will be sequenced more than once. 

● The number of mutated sites per cell (μ > 10). The exact value of μ is not critical, provided that the total 
number of mutations in the theoretically large sample of cells (n = 1,667) is sufficiently large to 
generously populate all SFS frequency bins. Note we use normalized VAF counts as summary 
statistics rather than absolute VAF counts. This normalization allows our inference to remain 
independent of the underlying mutation rate and reduces the optimization to just two parameters (see 
below). 
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● The number of required alternative reads to call a mutation (ri = 2). This number is extracted from our 
mutation calling protocols. This filter removes sequencing errors, but also all true singletons found in 
SFS and many other low-frequency variants. 

 
Finally, patient-tailored VAF distributions were simulated using patient-specific coverage distributions (with 
mean coverage across patients ~80X, Supplementary Figure 2H) and estimated RNA purities (Figure 2D). 
Then 5,151 simulations were performed per patient across a range of values for two parameters: 

● The “growth rate” (simulated range [1, 2] in 0.01 steps). Analytical expectations were used to vary the 
exponent in the SFS decay, which we interpret as a proxy for the "growth rate".  

● Fraction of clonal mutations, C (simulated range [0, 0.49] in 0.01 steps). The normalized SFS is a 
mixture of the (1-C) times the original normalized SFS plus C times an SFS with weight only at 
frequency n/2. 

The results of each simulated VAF were stored as the normalized number of mutations observed in binned 
intervals (ranging from 0 to 1 with a bin size of 0.01), summing to one. This is our vector of summary statistics 
which is compared to the patient normalized VAF with the same binned intervals. Approximate Bayesian 
Computation (ABC) was used to approximate the posterior probabilities that estimate the growth rates and 
fraction of clonal mutations from the normalized VAF simulations. The rejection method used a tolerance of 
0.001; all analyses were performed with the abc package78 implemented in R. We subsequently evaluated the 
mean of the parameters from the accepted simulations. 
 
In silico mutations 
 
We developed a null mutation model that integrates mutation rate variation at two genomic scales: the 
trinucleotide context (using the 96-type pyrimidine-oriented mutation spectrum) and the gene level. Note this 
model is not strand-oriented. To capture DNA sequence context-dependent mutability, we aggregated all 
single nucleotide somatic coding mutations across patients into two, not independent, pan-cancer substitution 
rate vectors per trinucleotide context—one for synonymous (putatively neutral) mutations in all genes 
(drivers+passengers) and another for coding mutations in passenger genes. Hereafter, we refer to these as the 
synonymous and passenger mutation spectra, respectively. We confirmed that the mutation spectra for both 
immunosuppressed and immunocompetent patients are remarkably similar (Pearson correlation coefficient = 
0.99, p < 0.0005, Supplementary Figure 4A). 

To account for the variation in mutability across genes, we first estimated the expected number of synonymous 
mutations per gene. This expected number for a given gene i (ξs,i) is calculated by multiplying the number of 
synonymous mutation opportunities per gene (Ls,i), which is determined by the gene's 3-mer composition and 
length and by the synonymous mutation spectrum. Next, we calculated the expected synonymous substitution 
rate per site (λs,i) for each gene by dividing ξs,i by Ls,i. It is important to note that λs,i varies between genes due 
to differences in their 3-mer composition for synonymous mutation opportunities. For instance, a gene with 
more synonymous CpG>TpG opportunities than the average gene will have a higher λs,i  on average. 

Subsequently, for each gene, we modeled the distribution of ξs,i using a Poisson distribution (dpois() function in 
R) with the gene's λs,i and Ls,i values. We then assessed how the observed number of synonymous mutations 
in gene i (Os,i) compares to this distribution. If Os,i matches the mean of the distribution of ξs,i, the gene's 
mutability (us,i) is one, indicating that the gene mutates as expected given its length and 3-mer composition. 
However, this is not typically the case, as some genes will mutate more or less than expected due to variations 
in regional mutation rate covariates, such as replication time or expression levels. To adjust for these factors, 
we define a corrected version of λs,i which accounts for gene mutability (λs,i′ = λs,i × us,i).  We again use a 
Poisson distribution and maximum likelihood estimation to find the value of λs,i′ that best explains Os,i. 
Supplementary Figure 4B displays the distribution of inferred us,i across genes. To validate the usefulness of 
including inferred gene mutabilities in our null mutation model, we compared the fit between the expected 
number of nonsynonymous mutations per gene (calculated using the passenger mutation spectrum and the 
gene's nonsynonymous mutation opportunities) and the observed number of nonsynonymous mutations per 
gene across all patients (Supplementary Figure 4C). Although the correlation is strong (R2 = 65%, p < 0.0005), 
it becomes even stronger (R2 = 74%, p < 0.0005) when we use the inferred gene mutability to calculate the 
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expected number of nonsynonymous mutations per gene, particularly for long genes (Supplementary Figure 
4D). This result suggests that incorporating gene mutability using synonymous mutation density is a 
reasonable choice. 

To generate in silico mutations, we begin by computing a large mutation probability vector that spans all coding 
sequences in human autosomes. This vector is constructed by concatenating substitution rate vectors for each 
site in a gene, which are determined by the passenger mutation spectrum and the gene's 3-mer composition 
(for both synonymous and nonsynonymous mutation opportunities). However, simply concatenating these 
substitution rate vectors does not account for the known significant variability in gene mutability 
(Supplementary Figure 4B). To address this, we adjust each gene's substitution rate vector by multiplying it by 
the corresponding gene's mutability vector. The resulting large vector is then normalized to ensure its sum 
equals one. Finally, we apply a hypergeometric distribution (rhyper() function in R), using the observed number 
of coding mutations in a patient's genome and the large normalized mutation probability vector, to generate 
100 replicates per patient. Each replicate contains the same number of coding mutations as observed in the 
original patient. The null mutation model itself is not patient-specific. What is patient-specific, however, is the 
mutation burden within coding sequences and the individual's HLA alleles. 
 
HLA alleles and B2M mutations 
 
Patient-specific HLA alleles were identified in both tumor and normal samples using Polysolver 
(Supplementary Table 3).79 Variant call files were queried for mutations in B2M. A comparison of the HLA 
alleles identified in tumor and normal samples was used to determine the frequency of loss of heterozygosity 
within the tumors. HLA alleles identified in the tumor samples were utilized for binding predictions to ensure 
that the predicted neoantigens could be presented within the tumor cells. To assign random HLA alleles, the 
total pool of HLA alleles was combined, and each patient was assigned 10 iterations of an equal number of 
randomly selected HLA alleles (e.g. if the patient had two unique HLA-A alleles, two unique HLA-B alleles, and 
two unique HLA-C alleles, the patient would be assigned to two random HLA-A alleles, two random HLA-B 
alleles, and two random HLA-C alleles).  
 
Annotation of binding neoantigens 
 
VEP-annotated mutations were processed into 21mer amino acid sequences using pVAC-Seq tools version 
3.0.5.80 The MHC class I:neoantigen dissociation constant (Kd) was then predicted for every 9mer sequence to 
each patient allele and non-patient allele with netMHCpan4.0.42, 51 Dissociation constants were also predicted 
for every in silico mutation from each of the 100 iterations for each patient-specific HLA allele. Subsequently, 
we calculated the average proportion of binding neoantigens across the 100 iterations of in silico mutations 
and compared this expected proportion to the observed proportion in the true patient mutations. Then, we 
adjusted the observed proportion of neoantigens (across all mutations, clonal mutations, and subclonal 
mutations) by the expected proportion from the in silico mutations. The adjustment for the proportion of binding 
neoantigens expected from the in silico mutational profiles accounts for patient-specific differences in the 
number of HLA alleles and their different binding proclivities. As an additional negative control, the proportion 
of binding neoantigens was compared for neoantigens predicted to bind to only non-patient alleles between 
clonal and subclonal neoantigens. Next, to compare the immunogenicity of the subclonal and clonal 
neoantigen populations, MHC binding stability was calculated for every 9mer sequence to each patient allele 
using netMHCstab1.0.52 The dissociation constant from the 9mer neoantigen with the best binding for each 
mutation was used as the score for each mutation. The stability score was assigned as the stability of the 
peptide bound to the allele with the minimum dissociation constant. The NeoScore was calculated as the linear 
combination of the dissociation constant, stability, and mRNA expression level, as described.15 
 
Enrichment of neoantigens at low expression 
 
Enrichment of predicted binding neoantigens at low expression was calculated with a method similar to 
previous methods.12 All neoantigens were ranked in order from lowest to highest expression. Then each 
neoantigen was assigned a rank, with neoantigens at the same expression level assigned to the same rank. 
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The ranks for all binding neoantigens (to patient alleles and random, non-patient alleles) and non-binding 
neoantigens were summed and divided by the total number of neoantigens in that category. Then, the result 
for all binding neoantigens was subtracted from that for the non-binding neoantigens. Overall, the enrichment 
score was calculated as: 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑚𝑚𝑚𝑚𝐸𝐸𝑚𝑚 =
∑ 𝐸𝐸𝑖𝑖
𝑖𝑖=𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1  
𝐸𝐸𝑛𝑛𝑛𝑛

−  
∑ 𝐸𝐸𝑖𝑖
𝑖𝑖=𝑛𝑛𝑛𝑛
𝑖𝑖=1  
𝐸𝐸𝑛𝑛

 

 
Where 𝐸𝐸𝑖𝑖 is the rank of a given neoantigen, 𝐸𝐸𝑛𝑛𝑛𝑛 is the number of non-binding neoantigens, and 𝐸𝐸𝑛𝑛 is the 
number of binding neoantigens. In this way, lower expression for the binding neoantigens leads to a lower 
adjusted rank score for the binding neoantigens, and a higher enrichment score when this value is subtracted 
from the adjusted rank score for the non-binding neoantigens. 
 
Immune cell deconvolution 
 
Immune cell deconvolution was performed across all samples using quanTIseq,81 xCell,82 and MCP counter,83 

applied using the immunedeconv (v.2.1.0) package in R.84 For clear visualization, MCP counter was scaled for 
heatmap visualization, while the other two packages had results easily visualizable without adjustment. To 
compare across methods, the high-expressing groups were assigned a cluster in the quanTIseq results and 
the cluster annotation was applied to the other two methods.  
 
Expression analysis 
 
To quantify the expression of markers of cytotoxicity and exhaustion in the bulk RNA-Seq data, we compared 
the TPM expression level of a range of markers, CD274, PDCD1, CTLA4, LAG3, GZMB, and PRF1 across all 
samples.  
 
Single-cell RNA-Seq analysis 
 
Publicly available scRNA-Seq and TCRseq data from tumor-infiltrating CD8+ T cells was obtained from 
Frazette et al.47 for 5 tumors from 5 immunocompetent patients, and 6 tumors from 5 immunocompetent 
patients. Gene-cell matrices and assembled V(D)J data were processed in the original publication using 
standard methods from Cell Ranger (https://support.10xgenomics.com/single-cell-gene-
expression/software/overview/welcome). We performed standard quality control filters to remove cells with a 
unique feature count of less than 200 or with > 10% mitochondrial counts. TCR sequencing data was 
integrated using scRepertoire (v1.12.0) in R.85 The total number of infiltrating CD8+ T cells was compared after 
filtering. The frequency of T cells from clonotypes at any given abundance was calculated and visualized using 
the abundanceContig function from scRepertoire. Next, normalization, feature selection, and integration were 
performed using the Seurat (v5.1.0) package in R.86, 87 Scaling was performed to prepare the data for 
dimensional reduction and then the data was visualized with Uniform Manifold Approximation and Projection 
(UMAP) using the Seurat package. We then used ProjectTILs (v3.3.1)48 to annotate the UMAP with known 
phenotypes of CD8+ tumor-infiltrating lymphocytes from the “human CD8+ TIL atlas” which was derived from 
11,021 single-cell transcriptomes across 20 samples and 7 tumor types 
(https://github.com/ncborcherding/utility). The proportion of T cells attributable to each phenotype was plotted 
across all T cells and T cells with a clonal frequency greater than 1%. Finally, pseudotime analysis was 
performed with standard approaches from Monocle3.88, 89 
 
Clustering analysis 
 
A set of characteristics was calculated for each neoantigen from every patient (Supplementary Table 4). mRNA 
expression of each neoantigen was calculated at the gene level and quantified as TPM. TAP transport and 
proteasomal cleavage potential were predicted with NetCTLpan1.1.50 Neoantigen:MHC class I dissociation 
constants were calculated with NetMHCpan4.0, and neoantigen:MHC class I binding stability was calculated 
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with NetMHCstab1.0. DAI was calculated as the ratio of the dissociation constant for the wild-type peptide 
compared to the neoantigen as described.15, 17 Cross-reactivity was calculated using the methods and code 
previously described.9 mRNA expression, dissociation constant, MHC class I:neoantigen binding stability, and 
DAI were all normalized on a log 10 scale, and all characteristics were scaled and centered on zero. Clustering 
was performed with kmeans clustering. The optimal number of clusters was determined by calculating the gap 
statistic at a range of clusters from 1 to 10 using the clusGap package from R (Supplementary Figure 6A).53 
 
QUANTIFICATION AND STATISTICAL ANALYSES 
 
Statistical analyses were performed in R. Statistical tests are indicated in all figure legends or the text. Non-
parametric tests were used when parametric tests were questionable as well as when the primary comparison 
was around comparing density functions between groups or simulations/hypothesized distributions. The 
sample size for each comparison is noted in the text or in the figure legends, where relevant. The threshold for 
significance was set to p < 0.05.   
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