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Abstract 
Cancer is an evolutionary disease driven by mutations in asexually reproducing somatic cells. In asexual microbes, bias reversals in the mutation 
spectrum can speed adaptation by increasing access to previously undersampled beneficial mutations. By analyzing tumors from 20 tissues, 
along with normal tissue and the germline, we demonstrate this effect in cancer. Nonhypermutated tumors reverse the germline mutation 
bias and have consistent spectra across tissues. These spectra changes carry the signature of hypoxia, and they facilitate positive selection in 
cancer genes. Hypermutated and nonhypermutated tumors thus acquire driver mutations differently: hypermutated tumors by higher 
mutation rates and nonhypermutated tumors by changing the mutation spectrum to reverse the germline mutation bias.
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Introduction
Cancer is an evolutionary disease arising from DNA muta-
tions that allow cells to proliferate ab- normally and invade 
other tissues (Brown et al. 2023). During the asexual repro-
duction of normal somatic cells, de novo mutations accumu-
late through time, which increases cancer risk with age 
(Cancer Research UK 2024). Cancer develops when mutations 
in specific genes or combinations of genes (so-called “cancer 
genes”) impair normal cell function by, for example, disabling 
the cell cycle checkpoints or activating signals which drive ex-
cessive cell division (National Cancer Institute 2021).

For both evolution within a tumor and evolution within a 
population of asexual organisms, the mutation rate is a key 
factor. In microbial evolution, lineages with an increased mu-
tation rate (mutators) frequently emerge due to their improved 
access to rare beneficial mutations (Raynes and Sniegowski 
2014). Along with increases in mutation rate, changes in mu-
tation spectra also affect mutational supply (Storz et al. 2019; 
Gomez et al. 2020; Sane et al. 2023). We previously demon-
strated that the interaction between mutation rate and spec-
trum powerfully influences the evolutionary trajectory of 
asexual populations (Tuffaha et al. 2023). Simply put, previ-
ously undersampled mutations may be reached by either mak-
ing more mutations (mutation rate elevation, Fig. 1a), or by 
making different mutations (mutation spectrum change, 
Fig. 1b). If mutations have historically occurred with some 
bias (undersampling some classes of mutations while oversam-
pling others), reversing this bias affords access to mutations 
that were previously unlikely to have occurred, such as under-
sampled beneficial mutations (Sane et al. 2023).

Cancer is a set of diseases that have similar hallmarks 
(Hanahan 2022), but there are many differences between can-
cer types, including different mutational processes and rates 
(Alexandrov et al. 2020). Tumors vary in mutational burden 
both within the same tissue (across patients) and between dif-
ferent tissues (Zhou et al. 2021). Hypermutation is usually 
caused by DNA mismatch repair defects, whether inherited 
or acquired from somatic mutations, which is common in 
gastrointestinal cancers (Yuza et al. 2017). Exposure to UV 
light also elevates mutation rates in skin cancers (Garibyan 
and Fisher 2010). Thus, hypermutation is sometimes defined 
based on these etiologies rather than the exact number of mu-
tations (Alexandrov et al. 2020). There is debate over whether 
a single universal threshold can be established to define 
“hypermutation” for all cancer types and sequencing techni-
ques, but it is generally considered to fall within the range of 
10 to 20 mutations per megabase (mut/Mb) (Mo et al. 2023; 
Swat et al. 2023; Haynes et al. 2024).

Along with these changes in mutation rate, biases in mutational 
spectra are widely observed in somatic mutations, where different 
tissues, individuals, and exposures show different tendencies for 
some types of mutations rather than the others to occur 
(Wellcome Sanger Institute 2024b). Distinct patterns of muta-
tions, called “mutational signatures,” arise in the DNA of normal 
(Li et al. 2021; Moore et al. 2021; Park et al. 2021) and cancer 
(Alexandrov et al. 2020, 2013) cells due to various biological 
processes (Alexandrov et al. 2015; Boot et al. 2022), environmen-
tal exposures (Kucab et al. 2019; Chen et al. 2024), or intrinsic 
factors (Meier et al. 2018). Whether and to what extent the com-
bined effects of these diverse mutational processes exhibit 
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mutational biases, and how these biases compare with the muta-
tion bias of the germline has not yet been determined.

We investigate the interaction between mutation rate 
and mutation spectrum changes in cancer. In particular, we 
compare the mutation spectrum of hypermutator (HM) and 
nonhypermutator (NHM) cancers, demonstrating a highly 
conserved spectrum across NHM samples that consistently re-
verses the mutation bias of the germline. Cancer driver muta-
tions thus occur through distinct mechanisms in HM and 
NHM cancers. In HM cancers, the supply of cancer driver mu-
tations is increased through higher mutation rates, while in 
NHM cancers, the reversal in mutation spectrum allows driver 
mutations. Our results emphasize the role of both the muta-
tion rate and spectrum as critical in modeling genetic evolution 
in cancers and open new perspectives into the mechanisms that 
drive the development and progression of different cancers.

Materials and Methods
A summary workflow of our methodology is shown in 
supplementary fig. S1, Supplementary Material online.

Datasets
We use three sets of data in our analysis, described as follows. 

1. PCAWG: The Pan-Cancer Analysis of Whole Genomes 
(PCAWG) study (https://dcc.icgc.org/pcawg) is an inter-
national collaboration which provides whole-genome 
mutation data from cancer tissues from over 2,700 do-
nors. Overall, the dataset has 55,657,793 SNV mutations 
including 421,336 coding mutations, in 20 different pri-
mary tissues.

(a) (c) (d)

(b)

(e) (f)

Fig. 1. a,b) Schematic: a germline spectrum (green) under-represents some classes of mutations. Access to these classes increases by either an 
overall mutation rate increase (a) or reversing the bias (b). c) Example of a spectrum with three types of mutations having the same uniform frequency 
1/3. Type 1 is over-represented in the germline (g1, green) while the other two are under-represented. Arrows show the direction that reverses the bias 
for each mutational type. An example of a bias-reversing spectrum is shown in blue (si ). d) Distributions of the RMR for transitions in normal tissues 
(yellow), HM tumors (red), and NHM tumors (blue) in different tissues, compared with the uniform (purple) and germline (green) levels. e) The 
corresponding RMRs for each 1-mer mutation type. Stars indicate distribution means that are significantly different from the germline. f) Bias reversals 
(y axis) for passenger gene spectra in different tissues (boxplots) are significantly higher in NHM than in HM or normal tissues at all three levels of 
analysis (x axis). The bias reversal measure for nonsynonymous mutations in cancer genes is also plotted (“x”). The germline results are shown as solid 
lines since the standard errors are smaller than the line thickness. Horizontal bars within boxplots indicate medians; whiskers indicate the 95%

confidence interval (CI); “+” signs represent outliers.
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Each sample in the PCAWG dataset was classified as a 
HM cancer or an NHM cancer based on the classification 
provided by Alexandrov et al. (2020).

We note that the hypermutated set consists mainly of 
skin tumors and samples with mismatch repair or putative 
polymerase epsilon defects. The distribution of coding mu-
tations from hypermutated and nonhypermutated samples 
in the different tissues is shown in supplementary fig. S2, 
Supplementary Material online, while the distribution of 
whole-genome mutations as well as the number of donors 
in the dataset are clarified in supplementary figs. S3 and S4, 
Supplementary Material online.

2. Normal tissue mutations: We collected whole-genome 
and coding mutations from 19 and 9 normal tissues as 
provided in the supplementary material of the work of 
Moore et al. (2021) and Li et al. (2021), respectively.

3. Germline de novo mutations: We consider the seven data-
sets used by Rodriguez-Galindo et al. (2020), which con-
sist of 679,547 germline single-base substitutions from 
family-based whole-genome datasets from multiple cen-
ters in Europe, Asia, and North America (see 
Rodriguez-Galindo et al. (2020) for details). These in-
clude 10,750 coding mutations.

All datasets are based on the reference genome hg19, and so 
we map mutations to this genome to determine the effects and 
contexts of mutations.

Cancer Gene Identification
We use the Cancer Gene Census (CGC) as the primary refer-
ence for defining cancer-related genes due to its extensive cur-
ation and validation in cancer genomics. CGC genes are 
identified based on strong experimental and clinical evidence, 
distinguishing them from passenger mutations and noncancer- 
associated genes. To assess whether CGC genes are consistent-
ly enriched for nonsynonymous mutations across tumor types, 
we compared the proportion of these mutations occurring in 
CGC genes to their representation in the coding genome. 
Across all tumor types, nonsynonymous mutations in CGC 
genes accounted for 5.7% of all nonsynonymous mutations, 
despite comprising only 4.5% of potential nonsynonymous 
mutations in coding genome sites. All individual tissues have 
a higher percentage of nonsynonymous mutations in CGC 
genes than the expected 4.5%. No such enrichment is found 
in synonymous mutations for most tissues. This significant en-
richment in nonsynonymous mutations (P = 6.7 × 10−7, 
t-test) confirms that CGC genes are preferentially mutated 
across diverse cancers, supporting their relevance as a robust 
reference set for cancer-associated mutations.

Spectrum Calculation
We consider two types of spectra: absolute count spectra and 
mutation rate spectra. The methods we use to calculate these 
spectra can be generalized to any spectrum with N mutational 
categories, and thus we explain for a general spectrum. 
However, we only calculate spectra at three different levels 
of detail: (i) the transition:transversion spectrum represented 
by a single measure, the transition frequency; (ii) the 1-mer 
spectrum that includes the frequency of each 1-mer mutation 
type, and (iii) the more detailed 3-mer spectrum, in which 
the mutation rate of each nucleotide depends on the identity 
of adjacent nucleotides.

Since a C > A mutation, for instance, on one strand of the 
DNA corresponds to a G > T mutation in the same position 
on the other strand, these two mutations are equivalent and 
we count them in a single mutational category; this category 
will be denoted C > A following the convention of taking 
the pyrimidine as the reference base. A 1-mer spectrum there-
fore consists of 6 categories of mutation, and the same idea 
leads to 96 categories in a 3-mer spectrum.

Assume M mutations are observed in a (sub)dataset, out of 
which mi are from a given mutational category i, so that its ab-
solute frequency is mi/M. The vector of these absolute fre-
quencies for all mutational types is what we call the absolute 
count spectrum.

When comparing spectra, it is sometimes useful to correct 
these absolute frequencies by the occurrence opportunities 
for each mutation type in the underlying genome. For ex-
ample, a very high frequency of C > A mutations could be ob-
served in a genome with high GC content, even if the 
underlying mutation rate is not elevated. Thus, to isolate 
changes in mutation rate, as opposed to genome content, we 
normalize the observed frequencies by mutational opportun-
ities in the human genome and call such a spectrum the muta-
tion rate spectrum. If mutational category i has ni 

opportunities to occur in the genome, then we define its gen-
omic mutation rate as mi/ni. For 1-mer and 3-mer mutations, 
the factor ni is simply given by the genome content; for transi-
tions and transversions, however, each base in the genome 
provides two opportunities for a transversion to occur, and 
one opportunity for a transition regardless of genome content. 
Normalizing the vector of these genomic mutation rates to add 
to one gives the mutation rate spectrum, i.e. the mutational 
frequencies if all categories had the same opportunity to occur, 
which will be referred to as the relative mutation rates as op-
posed to the absolute frequencies in the absolute count spec-
trum. We emphasize that both the absolute count spectrum 
and mutation rate spectrum are useful in different contexts, 
depending on whether we wish to compare the number of mu-
tations (of each type) that actually occurred, or the underlying 
mutation rate of each type.

Genes that are recurrently mutated across cancer patients 
are identified as putative cancer driver genes. Signals of posi-
tive selection have been previously detected in a few hundred 
of such genes (Wellcome Sanger Institute 2024a) using DNA 
sequencing data from tumor tissues. These signals measure 
an excess of amino-acid changing (nonsynonymous) muta-
tions compared with a null model. Because mutation hotspots 
could also be recurrently mutated across patients, several so-
phisticated methods that account for the peculiarities of som-
atic mutation spectra have been proposed (Martincorena et al. 
2017; Weghorn and Sunyaev 2017; Hess et al. 2019). When 
analyzing the spectra of the coding genome, we exclude muta-
tions that occur in cancer genes identified by the Cancer Gene 
Census list (Wellcome Sanger Institute 2024a). Restricting our 
analysis to mutations in noncancer “passenger” genes elimi-
nates the possibility that mutations driven by positive selection 
in cancer genes might distort the spectrum.

When comparing spectra across tissues or cancer types, we 
directly compare the corresponding Transition:Transversion 
(Ti:Tv) and 1-mer frequencies. To compare 3-mer spectra, 
we use correlation coefficients. Since both cosine similarity 
and Pearson correlation yield results dominated by CpG tran-
sitions (3-mers in which C > T) due to their high frequencies, 

Nonhypermutator Cancers Reverse Germline Mutation Bias · https://doi.org/10.1093/molbev/msaf105                                                      3
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/42/5/m

saf105/8148766 by U
niversity of Arizona user on 28 M

ay 2025

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf105#supplementary-data


we use Spearman rank correlation, which reduces over-
representation of highly frequent mutation types.

We define the uniform spectrum as the mutation spectrum 
that accesses all possible mutations with equal probability. 
While not expected empirically, this spectrum is important the-
oretically as no mutational class is either over- or undersampled 
(Couce et al. 2013; Sane et al. 2023; Tuffaha et al. 2023). For a 
mutation rate spectrum with N mutational categories, each cat-
egory has frequency 1/N in the uniform mutation rate spec-
trum. On the other hand, the uniform absolute count 
spectrum depends on the genome content. Again, if mutational 
category i has ni opportunities to occur in the genome, the uni-
form absolute count spectrum is simply given by ni/


ni.

Bias Reversal Measure
Consider a set of somatic mutations isolated from some cancer 
of interest. We seek to compare the spectrum of these muta-
tions with the germline spectrum. While normal tissue spectra 
could serve as an alternative reference, we use the germline 
spectrum because it represents the inherited mutational back-
ground upon which all somatic mutations accumulate. This al-
lows us to quantify fundamental shifts in mutational processes 
that occur during tumorigenesis, rather than tissue-specific 
mutations influenced by external factors. In particular, we 
would like to quantify the extent to which the cancer spectrum 
reverses (rather than reinforces) the mutational bias observed 
in the germline. As previously demonstrated (Sane et al. 2023; 
Tuffaha et al. 2023), the bias is reversed if a particular muta-
tion frequency moves toward (or in fact past) the uniform fre-
quency. Thus, for example, the unbiased absolute transition 
frequency is 0.33. If the transition frequency in the germline 
is 0.7, a transition frequency of either 0.6 or 0.2 are both in 
the direction that reverses the germline bias, whereas a change 
to 0.8 reinforces the germline bias.

Mutations that occur more frequently, in absolute terms, will 
have a greater effect on the degree to which the mutation bias is 
reversed. We therefore use absolute count spectra to compute 
the bias reversal. If we consider n mutational categories, the bias 
may be closer to the uniform level than the germline bias for 
some categories, but may be further away in others. Let di re-
present, for the ith mutational category, the direction which consti-
tutes a bias reversal, relative to the germline. Thus di = 1 if the 
germline has a lower frequency than the uniform level, such that 
an increase in frequency represents a bias reversal. Similarly, di = 
−1 when the germline has a higher frequency than the uniform lev-
el and reducing this frequency would yield a bias reversal. (In the 
unlikely case that the germline and the uniform levels are exactly 
equal, there is no bias to be reversed and therefore we take 
di = 0.) The overall bias reversal of a given spectrum is then meas-
ured by the quantity

V =
n

i=1

di(si − gi), (1) 

where gi and si are the frequencies of the ith mutational category in 
the germline spectrum and the new spectrum, respectively. 
Supplementary fig. S5, Supplementary Material online illustrates 
how the bias reversal measure is calculated for two fictional spectra 
with three types of mutations. We note two things: first, a spectrum 
need not reverse the bias in each individual mutational class to 
have a positive bias reversal measure; these effects are summed 
across classes. The extreme examples shown in this figure are 
for illustration. Second, we note that the bias reversal measure 

does not always combine linearly across scales. For example, the 
bias reversal measure at the Ts:Tv level will only be equal to the 
bias reversal measure at the 1-mer level if the frequencies of the 
two 1-mer Ti happen to shift, in every case, in the same direction 
as the overall Ti, and similarly for the four 1-mer Tv. When this 
occurs, the bias reversal measure combines linearly and is identical 
across scales, as observed in our data for example in Fig. 1f.

Signature Decomposition
Different mutational processes generate distinct combinations 
of mutation types. Recent efforts have successfully identified 
particular spectra, “mutational signatures,” associated with 
distinct mutational processes in cancer, and established links 
to their underlying mechanisms (Alexandrov et al. 2020). A 
mutational spectrum from a particular tissue or tumor type 
can thus be decomposed into weighted contributions from 
known mutational signatures (Rosenthal et al. 2016; Li 
et al. 2020; Serrano Colome et al. 2023; Jin et al. 2024).

We use SigNet (Serrano Colome et al. 2023) to find the com-
bination of mutational signatures, as identified in COSMIC 
v3.1 (Alexandrov et al. 2020), that best describe the observed 
mutation counts in our data. This algorithm leverages the 
strong correlations between mutational processes observed 
in cancer data, providing highly accurate decompositions 
even when the number of mutations is low (Serrano Colome 
et al. 2023).

In brief: we first count the number of observed mutations for 
each of the 96 mutation types. Since COSMIC signatures are 
derived from whole-genome data, when decomposing muta-
tional spectra from coding regions, SigNet first corrects for 
the 3-mer abundances in the coding genome; the input data 
are rescaled by the ratio between the 3-mer abundances in 
the coding genome and the whole genome.

The output of SigNet includes estimates of the signature 
weights, as well as a classification score, which reflects the degree 
to which the decomposition is considered reliable. SigNet also as-
signs a weight to an “unknown” category, which pools the weights 
from any signatures with predicted weight lower than 0.01.

We also perform a signature decomposition using 
SigProfileAssigment (Díaz-Gay et al. 2023) to validate our 
results.

Positive Selection Detection in Cancer Genes
The ratio of nonsynonymous to synonymous mutations (dN/ 
dS) is a standard measure used to detect the influence of natural 
selection; positive selection is inferred when dN/dS>1, and 
genes with strong evidence for positive selection in tumor sam-
ples are considered cancer genes (Martincorena et al. 2017). 
Here, rather than detecting cancer genes, we use a similar ap-
proach to check whether HM and NHM samples show signs 
of positive selection in known cancer genes. In other words, 
we check if selection acts differently in HM and NHM using 
the pooled coding 3-mer spectra across tissues in each of these 
two categories. To avoid the dominance of skin and colon (see 
supplementary fig. S2a, Supplementary Material online) in the 
pooled HM spectrum, mutations from skin and colon are 
downsampled so that the numbers of mutations from these 
two tissues are equal to the number of HM mutations in the 
next most prevalent tissue, in this case, stomach cancers 
(supplementary fig. S2b, Supplementary Material online).

Finding dN/dS is not possible for the four 3-mer mutation 
types (ACT > A, ACT > G, ATT > A, and ATT > G) that do 
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not generate synonymous mutations. Also, the number of syn-
onymous mutations in cancer genes in our dataset is low for 
some tissue types (<200 mutations for 10 tissues out of 20). 
These data are clearly not sufficient to compose a 96-category 
3-mer mutation spectrum.

Therefore, instead of using synonymous mutations, dS, as a 
neutral proxy, we use the fact that in the absence of positive 
selection, both cancer and passenger genes in tumor samples 
should have the same genomic mutation rates. This method al-
lows us to calculate expectations for synonymous and nonsy-
nonymous mutations in all 3-mer contexts based on passenger 
genes, and compare these with the observed mutations in can-
cer genes. We interpret any observed differences as signs of 
positive selection because signals of negative selection are 
nearly absent in tumor evolution (but see Weghorn and 
Sunyaev (2017) and Tilk et al. (2022)).

Consider a particular 3-mer. We first count the number of 
times this 3-mer occurs in the passenger genes in the human 
genome, n p. We then consider one of the three possible muta-
tions of that 3-mer, and count the number of observed muta-
tions of this type, in passenger genes, in the PCAWG dataset, 
mp. Dividing the observed mutation count in passenger genes 
by the number of occurrences of the 3-mer in passenger genes 
yields the expected genomic mutation rate for this 3-mer mu-
tation, μ = mp/n p.

To determine the expected number of mutations of this 
3-mer mutation type in cancer genes, we count the number 
of times this 3-mer occurs in cancer genes in the human gen-
ome, nc. In addition, we classify each of these instances as ei-
ther synonymous or nonsynonymous, depending on the 
outcome if this particular 3-mer mutation occurred at that 
position, such that nc = ncs + ncn, where ncs and ncn are the 
synonymous and nonsynonymous instances, respectively.

Given these values, it is straightforward to compute the ex-
pected numbers of synonymous and nonsynonymous muta-
tions in cancer genes, ecs = μncs and ecn = μncn, respectively. 
Finally, we count the number of observed mutations of this 
type in the PCAWG dataset in cancer genes, again differentiat-
ing synonymous (mcs) and nonsynonymous (mcn) mutations 
such that mc = mcs + mcn. The relative difference between the 
observed and expected numbers of mutations is then a measure 
of whether there is an excess of a particular type of mutation in 
cancer genes. We refer to this relative difference as the “excess 
measure,” computed for each 3-mer mutation as:

rs =
mcs − ecs

ecs
and rn =

mcn − ecn

ecn
(2) 

for synonymous and nonsynonymous mutations, respectively. 
If the excess measure is positive for a given 3-mer mutation 
type, then more mutations of that type are sampled in cancer 
genes than in passenger genes, for example, a value of 1 means 
there are twice as many mutations observed as expected. Due 
to the lack of synonymous mutations for the four 3-mer muta-
tions mentioned above, the excess measures for synonymous 
mutations are defined for only 92 of the 96 mutation types.

We use bootstrapping to assess the statistical significance of 
the excess measure for all 3-mer mutation types in particular 
types of cancer. The null hypothesis is that the observed num-
ber of synonymous and nonsynonymous mutations in cancer 
genes follows the same distribution as expected under random 
sampling, meaning there is no selection on 3-mer mutation 
types in cancer genes. Since mutations in cancer genes form 
about 5% of all observed coding mutations in PCAWG, we 
bootstrap 50, 000 samples from all coding mutations, where 

each sample is of the same size (5% of the total pool of coding 
mutations). Each of these samples has a number of synonym-
ous and nonsynonymous mutations in each 3-mer context, 
forming the distributions Bs and Bn across the bootstrapped 
samples, respectively.

To quantify deviation from the null expectation, we com-
pute a z-score comparing the observed numbers of synonym-
ous (mcs) and nonsynonymous (mcn) mutations in cancer 
genes to the bootstrapped distributions Bs and Bn, respective-
ly. Given that there are 96 comparisons, we use a conservative 
Bonferroni correction and consider an excess measure to be 
statistically significant at a P-value of 0.05/96 = 0.00052, 
which corresponds to the critical z-score value of z̃ = 3.47.

Results
Reduced Transition Bias in Nonhypermutated 
Samples
We define the mutation bias of any mutational type to be re-
versed, compared with the germline bias, if it differs from the 
germline bias in the direction of the unbiased state, which as-
sumes a uniform probability of each k-mer mutation type (see 
Methods) (Tuffaha et al. 2023) (Fig. 1c). Using family-based da-
tasets of de novo mutations (Rodriguez-Galindo et al. 2020), we 
find that the germline oversamples transitions (Ti) with a relative 
mutation rate (RMR) of 0.853 in coding mutations (Fig. 1d).

The Ti RMR in 9 normal tissue samples (Fig. 1d) is not sig-
nificantly different from the germline (t-test, P = 0.074). The 
liver is the only outlier, with a Ti RMR of 0.55, presumably 
related to the transversion-rich mutational process induced 
by aristolochic acid exposure (SBS22 in COSMIC database), 
as observed in female donors (Li et al. 2021). Similarly, the 
Ti RMR in the pooled data from HM cancers does not differ 
significantly from the Ti RMR in the germline (t-test, 
P = 0.57). In contrast, NHM samples show a significantly re-
duced Ti RMR (t-test, P = 9.1 × 10−9).

These results are supported when the overall Ti RMR is de-
composed at the 1-mer level (Fig. 1e). Note that the 1-mer 
RMRs of the germline are higher than the uniform spectrum 
level (1/6) for transitions and lower for transversions. Even 
when the germline RMR is very close to the uniform level 
(e.g. C > A mutations), NHMs show strong evidence for a re-
versed bias; for both transitions they have a significantly re-
duced RMR compared with the germline, while two of four 
transversions show a significantly elevated RMR (stars; 
Bonferroni-corrected P < 0.05/18 = 0.0028). In contrast, the 
HM 1-mer mutation spectra differ significantly from the germ-
line only for C > G transversions, where the Tv bias is not re-
duced but is in fact significantly reinforced. Note that none of 
the 1-mer mutation distributions for normal tissues have sig-
nificantly different means from the germline. Analogous re-
sults hold for whole-genome mutations (supplementary fig. 
S6, Supplementary Material online).

To extend our analysis to the 3-mer level, we define a new 
metric, the bias reversal measure, to summarize spectrum 
changes across mutation types. For any spectrum, the bias re-
versal measure sums the degree to which the spectrum reverses 
the bias observed in the germline (see Methods). For 
passenger-gene (noncancer-gene) mutations in HM and 
NHM cancers and at the Ti:Tv, 1-mer, and 3-mer levels, 
NHMs show distributions of this measure across tissues that 
are significantly higher than zero (Fig. 1f; t-test, P < 2.8 × 
10−9 in all three cases), whereas normal tissues and HMs are 

Nonhypermutator Cancers Reverse Germline Mutation Bias · https://doi.org/10.1093/molbev/msaf105                                                      5
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/42/5/m

saf105/8148766 by U
niversity of Arizona user on 28 M

ay 2025

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf105#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf105#supplementary-data


not significantly different from zero (t-test, P > 0.065 in all six 
cases), meaning that the bias is significantly reversed in NHM, 
but no such pattern is observed in normal tissues or HM. 
Similar results hold for the whole genome (supplementary 
fig. S7, Supplementary Material online).

We restricted our analyses of coding spectra to passenger 
genes to reduce possible confounding effects of positive selec-
tion (see Methods). Returning to cancer genes, we find that in 
normal tissue, HM, or NHM cancers, mutations in cancer 
driver genes tend to have a higher bias reversal than mutations 
in passenger genes (“x” in Fig. 1f). This higher bias reversal for 
cancer genes relative to passenger genes is not driven by differ-
ences in the expected counts of 3-mer mutations, as these are 
highly correlated between these gene classes (R > 0.99).

We recognize the importance of ensuring that NHM vs. HM 
differences are not simply driven by tissue composition. To 
test this, we analyzed mutation spectra within the five tissues 
that contain sufficient NHM and HM cases (Brain, 
Colorectal, Liver, Stomach, and Uterus; see supplementary 
fig. S2, Supplementary Material online). In the analysis re-
stricted to these five tissues, only 2 out of 6 mutation types 
in NHM samples showed significant differences from the 
germline—compared with 4 out of 6 when using data from 
all tissues—while the significance in HM samples (one muta-
tion type) remained unchanged. The loss of significance in 
some mutational types is presumably due to the lack of infor-
mation (only five tissues) and the strict Bonferroni correction 
we applied. As shown in supplementary figs. S8 and S9, 
Supplementary Material online, despite the reduced statistical 
power when using only five tissues, the overall trends observed 
in Fig. 1e and f are maintained, further supporting our conclu-
sions that distinct mutational processes underlie NHM and 
HM cancers.

NHM 3-mer Spectrum is Highly Similar Across 
Tissues
To test for similarity among spectra, we computed the rank cor-
relation coefficient between each tissue spectrum and all other 
spectra (pooled) in the same class. For instance, we correlated 
the spectrum from each tissue’s NHM samples with the spec-
trum computed by pooling NHM samples from all other tissues. 
NHM spectra are significantly more strongly correlated with 
one another (mean R = 0.86 ± SD = 0.052) than HM spectra 
are with one another (mean R = 0.62 ± SD = 0.16; Fig. 2a; 
t-test, P = 7.8 × 10−4). Considering unpooled pairs of tissues, 
NHM spectra also exhibit higher correlations than HM spectra 
(Fig. 2b). The overall positive correlation between NHM and 
HM spectra (R = 0.54, P = 1.89 × 10−08) is shown in 
supplementary fig. S10, Supplementary Material online, along 
with full 3-mer spectra (supplementary figs. S12 and S13, 
Supplementary Material online).

What Mutational Processes Characterize NHM 
Tumors?
To examine the mutational processes underlying mutation 
spectra changes, we conducted a signature decomposition 
analysis (Serrano Colome et al. 2023) (Fig. 3a). For the pooled 
NHM spectrum, 52% of the mutations are attributed to mu-
tation signature SBS5, 16.8% are related to the AID/ 
APOBEC family of cytidine deaminases (SBS2 and SBS13), 
and 14.4% of the mutations are attributed to SBS40, while 
other signatures have lower weights. All of the signatures 

composing the NHM spectrum have positive bias reversal 
measures (Fig. 3b), excluding SBS1 and SBS2.

Since the spectra of HM tumors vary substantially across tis-
sues (Fig. 2c), we aimed to perform tissue-specific signature de-
compositions of HM samples, but only skin and colon had 
sufficient mutations (supplementary fig. S2, Supplementary 
Material online, also see supplementary fig. S13, Supplementary 
Material online for the full 3-mer spectra). As expected, UV light 
signatures (SBS7a through SBS7d) dominate the skin spectrum 
(Fig. 3a); the two dominant signatures, SBS7a and SBS7b, have 
a reinforced bias (negative bias reversal measure; Fig. 3b). In con-
trast, mutations derived from a defective polymerase epsilon dom-
inate the colon HM spectrum (SBS10a and SBS10b, and the 
associated SBS28; Fig. 3a). All signatures underlying the colon 
HM spectrum have a positive bias reversal measure (Fig. 3b), ex-
plaining why colon cancer was the outlier with strong transition 
bias reversal in HM cancers (Fig. 1d).

We validated our results by performing a signature decom-
position using SigProfilerAssignment (Díaz-Gay et al. 2023). 
Despite some minor differences is signature identities and 
weights (supplementary fig. S11, Supplementary Material on-
line), the results are consistent with our findings using SigNet: 
the signatures that have higher weights in NHM and colon 
HM reverse the germline bias and are mostly attributed to 
DNA repair defects, while the highly weighted signatures in 
skin HM are still the bias-reinforcing signatures SBS7a and 7b.

Positive Selection in Cancer Genes in NHM Cancers 
Anticorrelated with the Germline Spectrum
Previous work has identified stronger signals of positive selec-
tion in tumors with lower mutation rates (Martincorena et al. 
2017; Tilk et al. 2022). Our results suggest that mutations that 
are positively selected in cancer, at least in NHM, may reverse 
germline mutation biases. To examine positive selection in 
both HM and NHM tumors, we compute the excess measure 
(equation (2)) for each 3-mer mutation (Fig. 4a). In both HM 
and NHM categories, we observe positive and negative excess 
measures for different 3-mer mutation types, but nonsynony-
mous mutations in NHM show the highest number of positive 
values, with a distribution mean that is significantly different 
from zero (Fig. 4a; t-test, P = 2.02 × 10−21). The nonsynony-
mous distribution in NHM is significantly different from 
each of the other three distributions (Wilcoxon rank sum 
test, P < 3.04 × 10−5). In agreement with previous work 
(Martincorena et al. 2017; Tilk et al. 2022), we thus find 
stronger evidence for positive selection acting on nonsynony-
mous mutations in NHM than in HM tumors. Note that the 
distribution mean for nonsynonymous mutations in HM is 
also significantly different from zero (t-test, P = 0.0065), but 
the distribution means for synonymous mutations are not 
significantly different from zero (t-test, Bonferroni-corrected, 
P = 0.44 and P = 0.04, respectively).

To detect selection on individual 3-mer mutation types (and 
to account for the variance in excess measure for rare mutation 
types), we compared the numbers of mutations observed in 
cancer genes with bootstrapped samples from all coding muta-
tions. For all 3-mer contexts in HM, and almost all those in 
NHM, the number of synonymous mutations in cancer genes 
falls within the 99.95% confidence interval of the boot-
strapped samples, showing no sign of selection (Fig. 4b). In 
contrast, nonsynonymous mutations show 24 positively se-
lected 3-mer mutation types in NHM (out of 96), but none 
in HM (Fig. 4c). Nonsynonymous excess measures in these 
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24 3-mer mutation types in NHM (Fig. 4d) are anticorrelated 
with the corresponding mutation count frequencies in the non-
synonymous germline spectrum, while this is not true for HM 
cancers (Fig. 4e), demonstrating that among mutations under 
positive selection, those least likely to occur in the germline 
show the strongest selective effect in NHM. There is no signifi-
cant correlation, however, between the germline mutation 
spectrum and the measure of positive selection across all 
3-mer mutation types.

Negative selection is typically detectable only in tumors with a 
very low mutation burden, as expected under strong clonal inter-
ference (Tilk et al. 2022); consistent with this expectation, we 
found no 3-mer mutation type with an observed value that falls 
below the confidence interval, in HM or in NHM (Fig. 4b).

Discussion
When looking at cancer through an evolutionary lens, cancer 
driver mutations are “beneficial” to the cell, as they increase a 
cell’s reproductive rate, leading to local or distant invasions 

(Alberts et al. 2002; Brown et al. 2023). These driver muta-
tions are prevalent across cancer types, but rare in normal tis-
sues (Ng and Chan 2023). While some cancers may develop a 
mutator phenotype, which can explain their increased access 
to driver mutations, a mutator phenotype is not essential for 
carcinogenesis (Tomlinson et al. 1996). Our previous work 
(Tuffaha et al. 2023) suggests another mechanism that enhan-
ces access to previously rare mutations, that is mutational bias 
shifts. Here we tested whether such bias shifts exist in cancer, 
and if so, whether this occurs only in nonhypermutated can-
cers or also in HMs.

We examined the mutational spectra of thousands of hu-
man tumor samples, computing spectra for HM and NHM 
cancers across 20 tissue types. We demonstrate that the muta-
tional spectra in NHM tumors is highly correlated across tis-
sues, an effect not observed in HM tumors (Fig. 2). Thus, 
while HM tumors show a dramatic increase in mutation 
rate, NHM tumors show only modest increases in mutation 
rate but have a distinct mutation spectrum that is repeated 
across diverse tissues and donors.

(a)

(b)

Fig. 2. NHM spectra are highly similar across tissues, unlike HM spectra. a) Correlating the spectrum of each tissue with the pooled spectrum from all 
other tissues in the same class (HM or NHM) shows high Spearman correlation coefficients for NHM (blue) and lower values for HM (red). Center bar 
indicates distribution median and whiskers show 95% CI; “+” signs represent outliers. b) Spearman correlation coefficients of the spectrum of each 
tissue with each other tissue in the same class (violin plots); horizontal lines represent the medians of the distributions. Correlation coefficients between 
each tissue and pooled samples from all other tissues in the same class (“x” symbols) are also shown for comparison; these are the values summarized in 
panel (a).
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Reversals of mutation bias, that push the mutation spectrum 
either towards or past the unbiased/uniform state, offer access 
to undersampled classes of mutations (Couce et al. 2013; Sane 
et al. 2023; Tuffaha et al. 2023), which we hypothesized may 
include the mutations that drive cancer. Consistent with this 
prediction, whether analyzed at the Ts:Tv, 1-mer, or 3-mer lev-
els, the distinct mutation spectrum of NHM (Fig. 2) tumors sig-
nificantly reverses the germline bias (Fig. 1), while HM tumors 
and normal tissues show no such effect.

These results suggest that while HM tumors access cancer 
driver mutations through elevated mutation rate, NHM tu-
mors access driver mutations through changes in mutation 
spectrum that correspond to reversals in germline mutational 
biases (Fig. 5).

We further confirm this hypothesis by demonstrating that 
driver mutations in NHM are indeed stronger, and/or more 
common, for those types of mutations that are less likely to oc-
cur in the germline or in healthy tissues (Fig. 4d). This suggests 
that indirect selection on 3-mer mutation modifiers (Milligan 
et al. 2022) may tune the human germline and healthy somatic 
mutation spectrum such that the greater the effect of a cancer 
driver mutation, the less likely it is to occur, and if it does oc-
cur, the less likely it is to remain unrepaired.

The results further justify the use of the germline spectrum 
as a baseline, noting that normal tissue spectra have been 
shown to be more similar to the germline than to tumor spec-
tra. Additionally, normal tissues undergo cell turnover and en-
vironmental exposure (Li et al. 2021; Moore et al. 2021), 
which can introduce tissue-specific mutational signatures un-
related to tumor evolution. Using the germline as a baseline en-
sures that our bias reversal measure reflects oncogenic 
mutational processes rather than external mutagenic influen-
ces that vary across tissues.

Our signature decomposition analysis (Fig. 3) suggests 
SBS13 and SBS40 as mutational processes that reverse the 

germline bias and play a key role in the NHM mutation spec-
trum. While SBS5 makes the largest contribution to the NHM 
spectrum, it is a clock-like signature (prevalence increases with 
patient age) that shows a modest bias reversal and is found in 
the germline and healthy tissues as well. In contrast, SBS13 is 
attributed to activity of the AID/APOBEC family of cytidine 
deaminases (Nik-Zainal et al. 2012), which is known to pro-
mote carcinogenesis and cause genomic instability (Talluri 
et al. 2021; Pecori et al. 2022; Shilova et al. 2022). This muta-
tional signature has been previously detected in many cancer 
types (see Fig. 3 in Alexandrov et al. 2020), and it reverses 
the germline bias mainly due to its richness in C > G transver-
sions. Likewise, SBS40 is a mutational signature detectable in 
many cancers (Alexandrov et al. 2020), and it strongly re-
verses the germline transition bias because it mimics a uniform 
spectrum (Fig. 3). There is a significant positive correlation be-
tween SBS40 and hypoxia (Serrano Colome et al. 2023), and 
the presence of transient or chronic hypoxia, characterized 
by critically low tissue oxygen, is a defining characteristic of 
cancer (Hanahan and Weinberg 2000). This hypoxic state is 
associated with a significant increase in mutation rate, thought 
to result from a reduction in the effectiveness of various DNA 
repair mechanisms (Bhandari et al. 2020; Kaplan and Glazer 
2020).

Further work needs to be done to test potential temporal 
contributions of these two mutational signatures to tumoro-
genesis. While the activity of the AID/APOBEC family is mu-
tagenic, likely contributing to initial tumor formation (Talluri 
et al. 2021; Shilova et al. 2022), many APOBEC3-induced mu-
tations occur later in tumor evolution (Butler and Banday 
2023). Similarly, hypoxic conditions in the healthy tissue, 
due to inflammation, could also precede tumorigenesis 
(Pham et al. 2021). Once a solid tumor has developed a certain 
minimum size, we hypothesize that the hypoxic state could en-
able a second round of driver mutations that are required for 

(a) (b)

Fig. 3. Most signatures composing the NHM and colon HM spectra reverse the bias, while mutational processes tend to reinforce the bias in skin HM 
samples. a) The weights for each mutational signature identified as contributing to the three spectra are shown; gray proportions at the top represent 
mutations from unknown mutational processes. b) Bias reversal measures for each signature; circles have an area proportional to the weight of that 
signature within the respective spectrum.
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metabolic changes and angiogenesis allowing the tumor to 
survive and grow under these new conditions.

Further studies are also needed to determine whether the 
distinct and remarkably stable mutation spectrum observed 
in NHM tumors is due to alterations in DNA repair enzymes 
resulting from common hypoxic conditions among patients, 
from other unknown causes shared among patients, or from 
multifactorial convergent evolution at the mutation spectrum 
level.

In contrast with the NHM spectrum, we observed a wide 
variability in the spectra of HM tumors. While skin cancers 
show no evidence of reversing the germline bias, HM samples 
from colon show a strong bias reversal. The mechanisms 
underlying hypermutation differ between these tissues—UV 
exposure in skin and defective mismatch repair (MMR) or 
polymerase proofreading in the colon—leading to distinct mu-
tational outcomes. In colon cancer, these mechanisms both in-
crease the mutation rate and promote bias reversal, which may 
contribute to its high incidence by providing more 

opportunities for driver mutations to arise (Tuffaha et al. 
2023). Interestingly, it has been observed that mutations in hy-
permutated and nonhypermutated colon cancers target differ-
ent cancer genes (van Geel et al. 2015), and here we show that 
colon cancer has two distinct spectra in these categories.

By comparing observed and expected mutation counts, we 
show that NHM tumors have an excess of nonsynonymous 
mutations in cancer genes in several 3-mer contexts, which 
we interpret as evidence for positive selection (Martincorena 
et al. 2017; Weghorn and Sunyaev 2017; Dietlein et al. 
2020). This excess is significant not only for nonsynonymous 
mutations, but for synonymous mutations in a few contexts, 
which is not completely unexpected since several synonymous 
mutations have been previously identified to act as cancer driv-
er mutations due to their impact on splicing, RNA secondary 
structure and expression levels (Supek et al. 2014; Sharma 
et al. 2019).

On the other hand, we find no strong signal for positive se-
lection in HM samples. This could be due to the combined 

(a) (b)

(c)

(d) (e)

Fig. 4. Evidence of positive selection in cancer genes is stronger in NHMs than HMs. a) Excess measures comparing cancer and noncancer genes for all 
3-mer mutation types are shown for synonymous and nonsynonymous mutations in both HM (red) and NHM (blue). Only the nonsynonymous 
distributions are significantly higher than zero. Boxplot whiskers include 95% CI. The positive y axis is truncated for clarity; “+” signs represent outliers. b) 
Histograms of z-scores obtained by comparing the numbers of synonymous mutations of each 3-mer mutation type in cancer genes with results in 50,000 
bootstrapped samples from all synonymous mutations. The Bonferroni-corrected CI from the boostrapped dataset is shown in yellow. c) Analogous 
results for nonsynonymous mutations. d,e) Excess measure for nonsynonymous mutations in NHM and HM is correlated with the germline 
nonsynonymous passenger-gene spectrum (log-scale). The 3-mer mutations that show significant positive selection for NS NHM (out of CI in panel (c), 
squares) show a significant anticorrelation only in the NHM case (red lines, (d) P = 0.012, (e) P = 0.61), while all 3-mer mutations taken together (squares 
and circles) do not show any significant correlations (black lines, (d) P = 0.7, (e) P = 0.43). The color of each point corresponds to the NHM z-score from 
panel (c). Open circles/squares (in panels (a) and (e)) indicate out-of-scope outliers.
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effects of clonal interference (Gerrish and Lenski 1998; Tilk 
et al. 2022) and deleterious load in HM tumors, such that 
only a small fraction of mutations will successfully spread 
through the population. This effect could dilute signals of 
positive selection when mutation rates are very high. Since 
the small fraction of beneficial mutations that spread are 
also expected to have very large selective effects, negative epis-
tasis could also reduce the signals of positive selection in HM 
tumors. This can occur when a single, large-effect mutation 
eliminates the need for further mutations that would other-
wise be beneficial, for example when cancer driver genes 
“break” the same regulatory pathway. Moreover, HM tumors 
are known to have longer sequence context dependencies than 
those accounted for by our 3-mer model (Pleasance et al. 2010; 
Dietlein et al. 2020). This may also make our detection of posi-
tive selection across 3-mer mutations less reliable in HM tu-
mors than in NHM tumors. Nevertheless, we find that the 
excess of nonsynonymous mutations in the 24 3-mer mutation 
types that show positive selection in NHM is also anticorre-
lated with the germline mutation spectrum in HM tumors 
(Fig. 4d,e). This suggests that the underlying fitness landscape 
may be quite similar for HM and NHM, but the inference of 
positive selection is simply more difficult in HM.

Our work putatively identified 24 3-mer mutation types 
that show positive selection in NHM. Classifying the contri-
bution of these mutations to oncogenes and tumor suppressor 
genes is a clear avenue for future work, as is characterizing the 
distribution of fitness effects of these mutation types in the 
germline. More generally, we hope that characterizing the dis-
tinct 3-mer spectrum observed in NHM cancers may shed fur-
ther light on cancer driver mutations and their critical role in 
early oncogenesis.
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