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Abstract 
Low-pass genome sequencing is cost-effective and enables analysis of large cohorts. However, it introduces biases by reducing heterozygous 
genotypes and low-frequency alleles, impacting subsequent analyses such as model-based demographic history inference. Several approaches exist 
for inferring an unbiased allele frequency spectrum (AFS) from low-pass data, but they can introduce spurious noise into the AFS. Rather than 
correcting the AFS, here, we developed an approach that incorporates low-pass biases into the demographic modeling and directly analyzes the AFS 
from low-pass data. Our probabilistic model captures biases from the Genome Analysis Toolkit multisample calling pipeline, and we implemented it 
in the population genomic inference software dadi. We evaluated the model using simulated low-pass datasets and found that it alleviated low-pass 
biases in inferred demographic parameters. We further validated the model by downsampling 1000 Genomes Project data, demonstrating its 
effectiveness on real data. Our model is widely applicable and substantially improves model-based inferences from low-pass population genomic data.
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Introduction
Enabled by reduced sequencing costs, population genetics has 
experienced a revolution, from focusing on a limited number 
of loci to now encompassing entire genomes (Maddison 
et al. 1992; Reid et al. 2016; Marchi et al. 2022). Yet research
ers must still trade off (i) the extent of the genome to be se
quenced, (ii) the depth of coverage for each sample, and (iii) 
the number of sequenced samples (Lou et al. 2021; Martin 
et al. 2021; Duckett et al. 2023). One way to address this trade 
off is to sequence one reference sample at high coverage depth 
while sequencing others at lower depth (Lou et al. 2021). 
Low-pass sequencing, in which the genome is sequenced at a 
lower depth of coverage, avoids many of the financial, meth
odological, and computational challenges of high-pass se
quencing (Li et al. 2011). Furthermore, limited availability 
of DNA can also make high depth impractical, especially for 
ancient samples and museum or herbarium specimens (Mota 
et al. 2023).

Despite its advantages, low-pass sequencing may lead to an 
incomplete and biased representation of genetic diversity 
within a population (e.g. Vieira et al. 2013; Han et al. 2014; 
Fox et al. 2019). Low-frequency genomic variants may not 
be detected (Fumagalli 2013), and genotypes may be less ac
curate (Nielsen et al. 2011). Low-pass sequencing increases 
the likelihood of miscalling heterozygous loci as homozygous 
(Duitama et al. 2011; Gorjanc et al. 2015), due to a lack of suf
ficient reads on homologous chromosomes to distinguish be
tween different alleles at a given locus. These issues can then 
bias downstream analyses. It is thus important for analysis 
methods to accommodate low-pass sequencing (see Carstens 
et al. 2022 for a discussion of related issues).

The allele frequency spectrum (AFS) is a powerful summary 
of population genomic data (Sawyer and Hartl 1992; Wakeley 
2009). Briefly, the AFS is matrix which records the number al
leles observed at given frequencies in a sample of individuals 
from one or more populations. The AFS is often the basis 
for inferring demographic history (Gutenkunst et al. 2009) 
or distributions of fitness effects (Kim et al. 2017). In low-pass 
sequencing, the loss of alleles and the excess of homozygosity 
can bias the estimation of the AFS (Fumagalli 2013) and thus 
those inferences.

To address the challenges of low-pass data, several tools have 
emerged (Bryc et al. 2013; Blischak et al. 2018; Meisner and 
Albrechtsen 2018) to estimate the AFS from low-pass data. 
One of the most widely adopted is ANGSD (Korneliussen 
et al. 2014), which offers a diverse range of analyses tailored 
for low-pass sequencing data. To infer an AFS, ANGSD uses 
sample allele frequency likelihoods, which can be computed ei
ther directly from raw data or, more frequently, from genotype 
likelihoods (Nielsen et al. 2012). These likelihoods quantify the 
probability of observing the complete set of read data for mul
tiple individuals at specific genomic sites, given particular sam
ple allele frequencies (Nielsen et al. 2012; Korneliussen et al. 
2014), enabling ANGSD to estimate allele frequencies. 
However, as the number of samples increases, ANGSD be
comes computationally inefficient and numerically unstable 
(Han et al. 2015). To address this, a score-limited dynamic pro
gramming algorithm was introduced, offering significantly 
greater efficiency by scaling linearly with the number of ge
nomes, unlike ANGSD’s quadratic complexity (Han et al. 
2015). Another method, winsfs, uses a stochastic expectation– 
maximization (EM) algorithm developed to address common 
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problems like overfitting, high-memory usage, and long runtime 
associated with standard methods for estimating AFS from low- 
pass sequencing data (Rasmussen et al. 2022). A related tool, the 
Bayesian genotype caller, calls genotypes from high-throughput 
sequencing, including low-pass sequencing, using population- 
level information and sequencing error rates to improve accur
acy (Maruki and Lynch 2017).

While tools for inferring an unbiased AFS have demonstrated 
substantial utility, they also present notable limitations. For in
stance, many analyses depend on differentiating between vari
ant types, such as synonymous versus nonsynonymous sites. 
But such differentiation requires calling genotypes, which the 
developers of ANGSD advise against (Korneliussen et al. 
2014). In cases of low or moderate sequencing depth, AFS infer
ence process can introduce significant uncertainty due to limited 
data, potentially leading to errors or biases in downstream ana
lyses (Lou et al. 2021). Furthermore, we observe here that these 
tools sometimes fall short of fully correcting for biases inherent 
in low-pass sequencing.

Rather than attempting to estimate an unbiased AFS from 
low-pass data, we developed a probabilistic model of low-pass 
AFS biases. We incorporated it into the population genomic 
inference software dadi (Gutenkunst et al. 2009), so the biased 
low-pass AFS can be directly analyzed. Our model is based on 
the multisample genotype calling pipeline of the Genome 
Analysis Toolkit (GATK), the most widely used tool for call
ing variants from read data (McKenna et al. 2010; Van der 
Auwera and O’Connor 2020). We assessed the accuracy of 
our model using simulated low-depth data as well as sub
sampled data from the 1000 Genomes Project (Fairley et al. 
2020, https://www.internationalgenome.org/). We found 
that our model accurately captures low-depth biases in the 
AFS and enables accurate inference of demographic history 
from low-pass data.

Model for Low-Pass Biases
Our approach is to incorporate low-pass sequencing biases 
into the model inference process. From a user perspective, 
our approach begins when the AFS is computed from an input 
Variant Call Format (VCF) file containing population genom
ic data. While parsing the VCF, population-specific distribu
tions for depth of coverage per site per individual are also 
extracted. (Note that our model does not incorporate quality 
scores, beyond the filtering done by GATK. The defaults for 
those filters ensure only high-quality reads are included in 
our analysis.) These distributions are passed to a function 
which wraps the demographic model function implemented 
in dadi. The demographic model function takes in an assumed 
set of demographic model parameters and returns the corre
sponding model AFS. The wrapper function takes as fixed in
puts nseq, the number of sequenced individuals; nsub, the 
number of individuals the AFS is subsampled down to; and 
D(d), the distribution of sequencing depths. (See Table 1 for 
a summary of key mathematical notation.) The wrapper func
tion acts on the AFS returned by the demographic model func
tion and applies the transformations described below to 
generate an AFS that is biased by low-pass sequencing. The 
user uses this wrapped function in place of the original demo
graphic model function during parameter optimization, to 
maximize the composite likelihood of their (biased) AFS data.

In the dadi command-line interface, dadi-cli (Huang et al. 
2023), low-pass bias correction is seamlessly incorporated into 
the workflow. When using GenerateFs, users can specify— 

calc-coverage to create a .coverage.pickle file containing per- 
sample depth of coverage data. During demographic infer
ence, the InferDM command accepts this file through the— 
coverage-model flag, allowing the LowPass model to adjust 
the AFS based on observed coverage, thereby addressing low- 
pass sequencing biases directly within the optimization pro
cess. Integration with dadi and dadi-cli require no additional 
free parameters, enabling an efficient yet thorough adjustment 
for low-pass bias correction developed in this study.

When biases arises from low-pass sequencing, the AFS may 
be affected by both the loss of low-frequency variants and the 
misidentification of heterozygous individuals as homozygous. 
These two effects result in a deficit of variant sites and mislead
ing shifts in allele frequencies, respectively. Moreover, the data 
must often be subsampled to generate an AFS for analysis, be
cause not all individuals will be called at all sites. We account 
for these distortions by sequentially modeling the probabilities 
of a variable site being called, of that site having enough called 
individuals for subsampling, and of having its allele frequency 
misestimated.

The specific choices in our model are motivated by the de
fault GATK multisample calling algorithm, in which informa
tion from all samples is used to identify whether a site is 
variant. In particular, we assume that a site will only be called 
as variant if at least two alternate allele reads are observed. 
Once a site is identified as variant, an individual will be called 
as missing if zero reads are observed, homozygous if all reads 
correspond to a single allele, and heterozygous if at least one 
reference and one alternate read are observed. For simplicity, 
we first describe the case of sequencing nseq individuals from a 
single population.

First, we calculate the probability that a true variant site is 
called as variant. Consider a site in which the true alternate al
lele count within our sample of nseq individuals is f. Those f al
ternate alleles can be distributed among the 2nseq sampled 
alleles in many ways. To quantify those ways, we define the 
partition function Pnseq(f ), which is an array of integer parti
tions with n entries that sum to the allele frequency f such 
that all entries in the partition are 0, 1, or 2 (corresponding 
to the possible genotype values). For example, the partitions 
defined by P4(3) are [2, 1, 0, 0] and [1, 1, 1, 0]. Each possible 
partition within Pnseq(f ) can occur in n!

n0!n1!n2!
2n1 ways, where 

n0, n1, and n2 denote the number of partition entries equal 
to 0, 1, or 2. (The factor of 2n1 accounts for the two possible 
haplotypes the alternate allele could lie on in each heterozy
gote.) The corresponding probability of each partition within 
Pnseq(f ) is then the number of ways it can occur divided by the 
total over all partitions within Pnseq(f ). The relation between 
the sample allele frequency and potential genotypes has previ
ously been explored to develop exact tests of Hardy–Weinberg 
equilibrium (Wigginton et al. 2005).

Table 1. Key mathematical notation.

nseq Number of sequenced individuals
nsub Number of individuals AFS is subsampled to
D(d) Distribution of sequencing depths d
f True alternate allele count
Pnseq(f ) Genotype partition function
n0, n1, n2 Numbers of true reference homozygotes, heterozygotes, 

and alternate homozygotes
Pa(n) Probability of observing n alternative reads
Phet

mis Probability a heterozygous individual is miscalled
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Let D denote the distribution of read depth d within the 
population sample, which we assume to be shared among all 
individuals. For an individual homozygous for the alternate al
lele, the probability of observing a alternate reads is simply 
Phom

a (a) = D(a). For a heterozygous individual, the probability 
of zero alternate reads is

Phet
a (0) =

􏽘

d

D(d)
1
2

􏼒 􏼓d

. (1) 

Here, we sum over the distribution of depths, and at each depth 
each read has a 1/2 chance of containing the reference allele, so 
the probability of all reads being reference is (1/2)d. Similarly, 
the probability of exactly one alternate read is

Phet
a (1) =

􏽘

d

d
1

􏼒 􏼓

D(d)
1
2

􏼒 􏼓
1
2

􏼒 􏼓d−1

. (2) 

Note that for depth d, there are d possible configurations with 
one alternate read and d − 1 reference reads.

For a given partition within Pnseq(f ) that has true genotype 
counts n0, n1, and n2, there are multiple ways of failing to 
identify the variant site. The probability of zero reads support
ing the alternate allele is

Ppart
a (0) = Phet

a (0)n1 Phom
a (0)n2 . (3) 

The probability of exactly one read supporting the alternate 
allele is

Ppart
a (1) = n1Phet

a (1)Phet
a (0)n1−1 Phom

a (0)n2

+ Phet
a (0)n1 n2Phom

a (1)Phom
a (0)n2−1. (4) 

Here, the two terms account for the probability that the alter
nate read occurs in one of the heterozygotes or homozygotes, 
respectively. The overall probability of not calling a variant 
site for a given partition is thus Ppart

a (0) + Ppart
a (1). And the 

overall probability of not calling a variant site with a given 
true allele frequency f is the sum of these probabilities over 
partitions Pnseq(f ), weighted by the partition probabilities. 
For any given coverage distribution, the probability of calling 
a variant site increases rapidly with allele frequency f 
(supplementary fig. S1, Supplementary Material online).

Second, we calculate the probability that a site has enough 
called individuals to enter the AFS. When analyzing low-pass 
data, generating an AFS for the full sample size nseq may result 
in the loss of many sites where not all individuals were called. 
Consequently, it is common to subsample the data to some 
lower sample size nsub; only sites with calls for at least nsub in
dividuals can then be analyzed. To calculate the probability 
that a site can be subsampled, we want to calculate the prob
ability that at least nsub individuals have at least one read, con
ditional on the site having been called as variant. This 
conditional probability is complex, so we make a simple ap
proximation. If a site has been called as variant, then at least 
one individual was called, so we sum the probability that an 
additional c individuals are called out of the remaining 
nseq − 1, where c is at least nsub − 1:

􏽘nseq−1

c=nsub−1

(nseq − 1)!
c!(nseq − 1 − c)!

D(0)nseq−1−c (1 − D(0))c. (5) 

The projection of the model AFS from sample size nseq down to 
sample size nsub is already implemented in dadi, based on sam
pling without replacement as initially described by Marth et al. 

(2004). Equation (5) is an additional overall factor by which 
the AFS is reduced, due to sites that cannot be projected down
ward because they do not have at least nsub called individuals. 
From this point onward, we consider partitions Pnsub(f ′) over 
the subsampled individuals, where f ′ is the true alternate allele 
count in the subsample.

Lastly, we calculate the distortion in estimated allele fre
quencies. Once a site as called as variant, low-pass sequencing 
can bias the estimation of the allele frequency at that site, if 
one or more heterozygotes are miscalled because all their reads 
are reference or alternate. For each heterozygous individual, 
this occurs with total probability

Phet
mis = 2

􏽘

d≥1

D′(d)
1
2

􏼒 􏼓d

, (6) 

where D′(d) = D(d)/
􏽐

d≥1 D(d), is the distribution of depths 
conditioned on having at least one read. For a partition with 
n1 true heterozygotes, the number of miscalled heterozygotes 
Nhet

mis is binomially distributed with mean n1Phet
mis. Each mis

called heterozygote has equal chance of being called as homo
zygous reference or alternate, so the number of miscalls to 
homozygous reference Nhet

→ref is binomially distributed with 
mean Nhet

mis/2, and the number of miscalls to homozygous al
ternate is Nhet

→alt = Nhet
mis − Nhet

→ref. The net change in estimated 
alternative allele frequency is then Nhet

→alt − Nhet
→ref.

The biases caused by low-pass sequencing do not depend on 
the underlying AFS; for each true allele frequency a given frac
tion will always, on average, be miscalled as any given other al
lele frequency. The correction above can be thus be calculated 
once for a given data set then applied to all model AFS generated, 
for example, during demographic parameter optimization. For 
efficiency, we calculate and cache an nseq by nnub transition ma
trix that can be multiplied by any given model AFS for nseq indi
viduals to apply the low coverage correction. When analyzing 
multiple populations, we calculate and apply transitions matri
ces for each population, because variant calling is independent 
among populations once a variant has been identified. Variant 
identification is, however, not independent among populations, 
which we address using simulated calling described next.

When calculating the probability of miscalling a heterozy
gote (Equation (6)), the correct distribution of depth is not 
simply D(d); rather it is the distribution conditional on the 
site being identified as variant. The lower the true sample alter
nate allele count, the more these distributions will differ. The 
conditional distribution is complex to calculate, particularly 
when multiple populations are involved. Instead, for true al
lele frequencies for which the probability of not identifying 
is above a user-defined threshold (by default 10−2), we simu
late the calling process rather than using our analytic results. 
For multiple populations, we calculate this threshold assum
ing that a variant must be identified independently in all pop
ulations, which gives a lower bound on the true probability of 
not identifying. To simulate calling, for a given true allele fre
quency (or combination in the multipopulation case) we simu
late reads (default 1,000) using the coverage distribution D(d) 
and simulate variant identification and genotype calling for 
each potential partition of genotypes across the populations, 
proportional to its probability. For each combination of input 
true allele frequencies simulated, we estimate and store prob
ability of each potential output allele frequency. These distor
tions are then applied in place of the transition matrices from 
the analytic model.

Modeling biases from low-pass genome sequencing · https://doi.org/10.1093/molbev/msaf002                                                                  3
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/42/1/m

saf002/7976825 by U
niversity of Arizona Library user on 24 January 2025

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data


For inbred populations, there is an excess of homozygotes 
compared to the Hardy–Weinberg expectation, which reduces 
biases associated with low-pass sequencing. In this case, we 
follow Blischak et al. (2020) and within each genotype parti
tion calculate the probability of reference homozygotes, heter
ozygotes, and alternate homozygotes using results from 
Balding and Nichols (1995, 1997), given the inbreeding coef
ficient F. The partition probability is then multinomial given 
these probabilities. In these calculations, we approximate the 
population allele frequency by the true sample allele fre
quency. Because calculation of the low-pass correction is ex
pensive compared to typical normal model AFS calculation, 
we precalculate and cache transition matrices and calling sim
ulations. But inbreeding is often an inferred model parameter, 
to be optimized during analysis. In this case, users can specify 
an assumed inbreeding parameter for the low-pass model, op
timize the inbreeding parameter in their demographic model, 
update the inbreeding coefficient assumed in the low-pass 
model, and iterate until convergence.

Results

Low-Pass Sequencing Biases the AFS
We used simulated data to assess the biases introduced by low- 
pass sequencing with GATK multisample calling, along with 

our model of those biases. For a simulated population under
going growth (supplementary fig. S2a, Supplementary 
Material online), low-pass sequencing reduces the number of 
observed low-frequency alleles (Fig. 1). Our model accurately 
captures these biases (Fig. 1). In contrast with our model, 
ANGSD attempts to reconstruct the true AFS from low-pass 
data. In our simulations, ANGSD reconstructed the mean 
shape of the AFS well, but it introduced dramatic fluctuations 
into the reconstructed AFS at low depth (Fig. 2). winsfs per
formed better than ANGSD, producing smoother AFS esti
mates and reducing errors at low coverage (Fig. 2).

When a pair of populations undergoing a split and isolation 
(supplementary fig. S2b, Supplementary Material online) is 
analyzed through a joint AFS, similar low coverage biases occur 
(supplementary fig. S3, Supplementary Material online). Again, 
our model corrects those biases well (supplementary fig. S3, 
Supplementary Material online). Similar to the single-population 
case, ANGSD also introduces large fluctuations in the joint AFS 
(supplementary fig. S4, Supplementary Material online). While 
winsfs enhances AFS estimation at low depth of coverage, it 
tends to introduce more noise as the depth of coverage increases 
(supplementary fig. S4, Supplementary Material online).

Low-pass biases are expected to be smaller in inbred 
populations, due to the reduction of heterozygosity. In a 
simulated population recovering from a bottleneck with in
breeding (supplementary fig. S2c, Supplementary Material on
line), biases are still observed, which our model corrects 

(a) (b) (c) (d)

FIG. 1. The low-pass AFS is biased, which our model captures. Simulated sequence data from an exponential growth demographic model for 20 
individuals were called by GATK and subsampled to 16 individuals (to accommodate missing data at low depth). The GATK-called AFS (green) is biased 
compared to the true AFS (orange), and our dadi model for low-pass sequencing (purple) fits those biases well. Coverage was a) 3×, b) 5×, c) 10×, and 
d) 30×.

(a) (b) (c) (d)

FIG. 2. ANGSD and winsfs correct for low-pass bias of the AFS, but ANGSD introduces fluctuations. For the same simulations as Fig. 1, ANGSD (blue) and 
winsfs (green) were used to reconstruct the true AFS (red). Coverage was a) 3×, b) 5×, c) 10×, and d) 30×.
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(supplementary fig. S5, Supplementary Material online). 
Again, ANGSD introduced large fluctuations in low-pass 
AFS, beyond those expected from inbreeding (supplementary 
fig. S6, Supplementary Material online).

Demographic History Inference from Low-Pass AFS
To assess effects on inference, we first fit demographic models 
to single-population data simulated under the same growth 
model as our prior simulations (supplementary fig. S2a, 
Supplementary Material online). When not modeling low-pass 
biases, the final population size was underestimated (Fig. 3a), 
consistent with a deficit of low-frequency alleles. The timing 
of growth onset was also inaccurately inferred, underestimated 
at 3× depth and overestimated at 5× depth (Fig. 3b). When the 
same data were fit with our low-pass model, both model param
eters were accurately recovered (Fig. 3a, b) even at the lowest 
depth. Fits to the AFS reconstructed by ANGSD and winsfs 
also yielded accurate model parameters (Fig. 3a, b).

The logarithm of the likelihood is commonly used to assess 
the quality of model fit. ANGSD and winsfs reconstruct the 
AFS for the full sequenced sample size, while we subsample 
in our approach to deal with missing genotypes, so the likeli
hoods are not directly comparable. The likelihoods of models 
fit to the subsampled GATK data were similar whether or not 
low-pass biases were modeled (Fig. 3c), suggesting that the 
likelihood itself cannot be used to detect unmodeled low-pass 
bias. When fitting AFS estimated by ANGSD, likelihoods were 
much lower at low coverage than high coverage (Fig. 3d), like
ly driven by the fluctuations ANGSD introduced into the esti
mated AFS (Fig. 2). Conversely, likelihood estimates were 
more stable with winsfs, as the variance in likelihoods de
creased with increasing depth of coverage (Fig. 3d).

For two-population data simulated under an isolation mod
el (supplementary fig. S2b, Supplementary Material online), 
similar results were found. Fitting the observed low-pass 
AFS with our model enabled accurate parameter inference (al
though there was some bias at 3× coverage) as did fitting the 
AFS estimated by ANGSD and winsfs (Fig. 3e, f). As in the 
single-population case, likelihoods were substantially lower 
when fitting the ANGSD and winsfs-estimated AFS, consistent 
with introduced fluctuations in the AFS (Fig. 3g, h). For both 
models, at 3× coverage, ANGSD and winsfs showed slightly 
better results than dadi-low-pass in parameter inference 
(Fig. 3a, e).

For one-population data simulated under a growth model 
with inbreeding (supplementary fig. S2c, Supplementary 
Material online), failing to correct for low-pass biases at low in
breeding (F = 0.1 or F = 0.5) led to similar biases as with no in
breeding, which our low-pass model corrected (supplementary 
fig. S7, Supplementary Material online). For high inbreeding 
(F = 0.9), the impact of low-pass sequencing on accuracy 
was smaller, because inbreeding reduces heterozygosity 
(supplementary fig. S7, Supplementary Material online).

When applying our low-pass bias correction, the user must 
specify a value for inbreeding, while they may separately esti
mate it during demographic parameter optimization. We 
tested the impact of misspecifying inbreeding in the low-bias 
correction using data simulated with moderate inbreeding of 
F = 0.5. Large inbreeding values were inferred if inbreeding 
was initially underestimated in the low-coverage model, 
and small values were inferred if inbreeding was initially 
overestimated (supplementary fig. S8c, Supplementary 
Material online). A substantial difference between the in
breeding coefficient used for correction and the inferred val
ue thus suggests that the assumed inbreeding coefficient was 

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Our low-pass model, ANGSD and winsfs enable accurate demographic parameter inference. a, b) From data simulated under a single-population 
growth model, the final population size and time of growth onset (T) were accurately inferred using our low-pass model and a GATK-called AFS or using 
normal dadi and an ANGSD and winsfs-called AFS. But they were biased if low depth was not accounted for when fitting a GATK-called AFS. (Dashed 
horizontal lines are simulated true values.) c) The likelihoods using the GATK AFS were similar whether or not low-pass biases were modeled. d) The 
fluctuations introduced into the AFS by ANGSD and winsfs caused low likelihoods at low depth of coverage for ANGSD. e–h) For a two-population split 
with isolation model, similar results were found, although inferences from our low-pass model were slightly biased at 3× coverage.
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not optimal. Users can thus iterate and update the value as
sumed in the low-pass correction to converge to a best infer
ence of inbreeding.

Analysis of Human Data
To empirically validate our approach and compare with 
ANGSD and winsfs, we used chromosome 20 sequencing 
data from the 1000 Genomes Project, focusing on two sets 
of samples: Yoruba from Ibadan, Nigeria (YRI) and Utah res
idents of Northern and Western European ancestry (CEU). We 
inferred a single-population two-epoch demographic model 
(supplementary figure S9a, Supplementary Material online) 
from the YRI samples, and a two-population isolation-with- 
migration model (supplementary fig. S9b, Supplementary 
Material online) from the combined YRI and CEU samples. 
To mimic low-pass sequencing, we subsampled the original 
high-depth data (which averaged 30× per site per individual) 
to create data with low to medium depth.

As with simulated data, the observed AFS from low-pass 
subsampled data was biased compared to high-pass data 
(Fig. 4a). Using the GATK pipeline, low-pass data yielded 
few low- and high-frequency derived alleles. In contrast to 

the simulated data, on these real data ANGSD and winsfs 
failed to recover the correct number of low-frequency alleles 
at 3× and 5× depth, while still introducing large fluctuations 
at intermediate frequencies (Fig. 4b, c).

If low-pass biases were corrected for, we expected the in
ferred demographic parameters from subsampled low-pass 
data to match those from the original high-pass data. For 
the two-epoch model fit to YRI data, we found that with a 
GATK-called AFS and no low-pass model (Table 2), the in
ferred population sizes were biased downward and the times 
were inaccurate, similar to the growth model fit to simulated 
data. With the low-pass model, inferred values for low depth 
were similar to those for high depth, with some deviation at 3× 
(Table 2). Results from fitting ANGSD and winsfs-estimated 
spectra were similar to not modeling low depth, suggesting 
that ANGSD and winsfs are ineffective for these data 
(Table 2). In the simulated datasets, only ANGSD showed 
notably low likelihoods at low depth of coverage, whereas 
in the real data, both ANGSD and winsfs exhibited poor 
performance.

For the isolation-with-migration model fit to YRI and CEU 
data, the results were broadly similar (supplementary table S1, 
Supplementary Material online). For population sizes and the 

(a) (b) (c)

FIG. 4. Allele frequency spectra from 20 YRI samples versus subsampled sequencing depth. a) Spectra generated using the GATK pipeline and 
subsampled to 32 haplotypes to accommodate missing genotypes. b) Spectra generated using ANGSD genotype likelihood optimization with BAM files 
input. c) Spectra generated using winsfs genotype likelihood optimization.

Table 2. One-population YRI model analysis results.

Depth

Parameter AFS Model 30× 10× 5× 3×

νYRI GATK dadi 1.82 1.76 1.55 0.05
GATK Low-pass 1.83 1.79 1.74 1.57

ANGSD dadi 1.82 1.83 1.71 0.08
winsfs dadi 1.80 1.84 1.72 0.08

T GATK dadi 0.43 0.51 0.91 0.001
GATK Low-pass 0.43 0.47 0.47 0.44

ANGSD dadi 0.60 0.73 1.02 0.001
winsfs dadi 0.55 0.74 1.03 0.001

θ ( × 104) GATK dadi 5.14 5.07 4.77 5.99
GATK Low-pass 5.15 5.11 5.12 5.16

ANGSD dadi 5.48 5.24 4.93 6.80
winsfs dadi 5.52 5.21 4.90 6.81

Log-likelihood GATK dadi −289 −258 −557 −1,301
GATK Low-pass −294 −289 −327 −347

ANGSD dadi −467 −495 −1,188 −5,674
winsfs dadi −497 −584 −1,207 −3,443

Inferred demographic parameters in dadi using empirical GATK and ANGSD AFS. We analyzed GATK empirical spectra without (dadi) and with low-pass 
correction (low-pass).
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divergence time, inferences were more stable from GATK 
genotyping and our low-pass model than from ANGSD and 
winsfs-estimated AFS. By contrast, the inferred migration 
rate was similar across analyses. For both the two-epoch 
and isolation-with-migration models, the selection of GATK 
parameters had negligible influence on the results, as evi
denced by the consistent similarity in the outcomes when 
using minMapQ = 30 (Table 2 and supplementary table S1, 
Supplementary Material online) and minMapQ = 1 
(supplementary tables S2 and S3, Supplementary Material
online).

Discussion
We assessed the biases introduced by low-pass sequencing using 
GATK multisample genotype calling and developed a model to 
mitigate these biases. In contrast to existing approaches (e.g. 
Korneliussen et al. 2014; Han et al. 2015; Mas-Sandoval 
et al. 2022), which attempt to estimate an unbiased AFS to 
which standard model-based analyses can be applied, we direct
ly analyzed the low-pass AFS by accounting for low-pass biases 
in our modeling framework. In a simulated population under
going growth, we found that low-pass sequencing reduced the 
presence of low-frequency alleles (Fig. 1), consistent with find
ings from previous studies (Han et al. 2014). Our model ac
counted for these biases, contrasting with ANGSD, which 
created fluctuations in the AFS at low depth (Fig. 2). In scen
arios involving two populations, we observed similar biases, 
which our model effectively corrected, whereas ANGSD intro
duced additional noise (supplementary figs S3 and S4, 
Supplementary Material online). For demographic inference, 
using our model enabled accurate parameter estimates even at 
low-pass depths, while neglecting low-depth biases resulted in 
substantial inaccuracies (Fig. 3). ANGSD also yielded accurate 
estimates, but worse likelihoods. Empirical testing using human 
data from the 1000 Genomes Project showcased the accuracy of 
our correction method in improving demographic inference 
from low-pass data, outperforming both uncorrected analysis 
and ANGSD results (Fig. 4 and Table 2 and supplementary 
table S1, Supplementary Material online).

While ANGSD is recognized for its effectiveness in man
aging low-pass sequencing, our results showed its difficulties 
in modeling medium-frequency alleles. This is reflected in low
er likelihood scores, particularly when comparing low-pass 
datasets to high-pass ones (Fig. 3). Despite their utility in in
corporating uncertainty related to low-pass sequencing 
(Nielsen et al. 2011; Fumagalli 2013; Korneliussen et al. 
2014), genotype likelihoods might not always accurately cap
ture the entire range of allele frequencies. Despite the AFS fluc
tuations, ANGSD yielded reliable parameter estimates for 
simulated data. But ANGSD was unable to accurately estimate 
the demographic parameters of real datasets, as demonstrated 
in the analysis of the 1000 Genomes Project data (Table 2 and 
supplementary table S1, Supplementary Material online). This 
underscores the need for rigorous and critical assessments of 
results by evaluating the likelihood of the model and conduct
ing uncertainty analysis. Similarly, winsfs showed the same 
pattern as ANGSD, performing well in simulations and with 
less noise in AFS estimation (Figs. 2 and 3), but producing in
accurate results in the analysis of 1000 Genomes data (Table 2
and supplementary table S1, Supplementary Material online).

The observed discrepancy between simulated and empirical 
data performance in ANGSD and winsfs likely stems from 
multiple underlying factors. While simulated data offers well- 

controlled and known parameters, which facilitate accurate 
model fitting, real-world datasets such as the 1kGP introduce 
complexities like sequencing biases or population structure. 
These elements may not be fully captured by ANGSD’s model 
assumptions, contributing to its underperformance with em
pirical data. Specifically, ANGSD’s reliance on genotype like
lihoods, which are sensitive to the accurate modeling of 
sequencing errors, can pose challenges when real data exhibit 
issues such as base quality miscalibration or variable sequen
cing depth. A more detailed exploration of ANGSD’s assump
tions, particularly regarding error profiles and filtering 
strategies, is required to fully understand these discrepancies 
and improve performance with empirical datasets.

Variant discovery using GATK involves two main ap
proaches: multisample (classic joint-calling) and single-sample 
calling (Nielsen et al. 2011). We modeled multisample calling, 
which has higher statistical power compared to single-sample 
calling (Nielsen et al. 2011; Poplin et al. 2018). But multisam
ple calling can become computationally burdensome with lar
ger sample sizes, leading to the development of incremental 
single-calling as a scalable alternative (McKenna et al. 2010; 
Van der Auwera and O’Connor 2020). When our model 
was applied to incremental single-calling AFS from sub
sampled 1000 Genomes Project data, parameter inference 
was poor (supplementary table S4, Supplementary Material
online). Therefore, our model should only be used with multi
sample calling, and a slightly different model may need to be 
developed for incremental single-calling.

We present a GATK multisample calling model designed to 
compensate for AFS biases introduced by low-pass sequen
cing. Although tailored for GATK, our model’s design allows 
for its extension to different pipelines with modifications to 
address the unique aspects of each calling algorithm. For ex
ample, our model currently assumes that a site is called 
when at least two reads supporting the alternative allele are 
found (Equations (3) and (4)), but this could be modified for 
other pipelines with different calling criteria. Our approach 
can thus be generalized to other calling pipelines, including 
those using short reads, long reads, and hybrid approaches 
(e.g. Bankevich et al. 2012; Poplin et al. 2018). Note that 
our mathematical model assumes a shared read depth distribu
tion among all individuals, and some studies may vary depth 
among individuals. Simulations suggest, however, that our 
model remain accurate with uneven depths (supplementary 
fig. S10, Supplementary Material online).

Our approach can also be integrated into other AFS-based 
inference tools such as moments (Portik et al. 2017; Leaché 
et al. 2019), fastsimcoal2 (Excoffier et al. 2013, 2021), 
GADMA (Noskova et al. 2020), and delimitR (Smith and 
Carstens 2020), because our approach modifies the model 
AFS, independent of how it is computed. Our approach may 
also be useful in approximate Bayesian computation 
(Beaumont 2010; Csilléry et al. 2012) and machine learning 
workflows (Pudlo et al. 2016; Smith and Carstens 2020), 
facilitating simulation of low-pass datasets. Note, however, 
that we model bias in the mean shape of the AFS under 
low-pass sequencing, not its full variance (supplementary 
fig. S11, Supplementary Material online). Furthermore, 
AFS-based analyses are used not only for demographic studies 
but also to examine natural selection, including inferring the 
distribution of fitness effects of new mutations (Eyre-Walker 
and Keightley 2007; Huang et al. 2021). Our approach can 

Modeling biases from low-pass genome sequencing · https://doi.org/10.1093/molbev/msaf002                                                                  7
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/42/1/m

saf002/7976825 by U
niversity of Arizona Library user on 24 January 2025

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf002#supplementary-data


thus facilitate population genomics research across tools, ap
proaches, and problem domains.

In conclusion, we have developed a robust correction for 
low-pass sequencing biases, significantly enhancing the accur
acy of demographic parameter estimation at various coverage 
depths. As the genetic research community continues to 
address challenges associated with low-pass data (Bryc et al. 
2013; Korneliussen et al. 2014; Blischak et al. 2018; 
Meisner and Albrechtsen 2018), especially when constrained 
by economics or sample availability, our methodology pro
vides enables more reliable genetic analysis.

Material and Methods

Simulating AFS Under Low-Pass Sequencing
We used msprime (Kelleher et al. 2016; Baumdicker et al. 
2022) to generate SNP datasets via coalescent simulations. 
We simulated two demographic models. The demographic 
models were visualized using demesdraw (Gower et al. 
2022). The first model, single-population exponential growth 
(supplementary fig. S2a, Supplementary Material online), in
volved two parameters: the relative population size ν1 = 10 
and time of past growth T = 0.1 (in units of two times the ef
fect population size generations). The second model, two- 
population isolation (supplementary fig. S2b, Supplementary 
Material online), involved three parameters: equal relative 
sizes of populations 1 and 2, ν1 = ν2 = 1, and divergence 
time in the past T = 0.1. For each model, we conducted 25 in
dependent simulations. For the exponential growth model, we 
sampled 20 diploid individuals, whereas for the isolation mod
el, we sampled 10 individuals per population. Both demo
graphic scenarios used an ancestral effective population size 
Ne of 10,000, a sequence length of 107 bp, a mutation rate 
of μ = 10−7 per site per generation, and recombination rate 
of r = 10−7 per site per generation.

For simulations incorporating inbreeding, we used SLiM 4 
(Messer 2013; Haller and Messer 2023). Datasets were gener
ated under a bottleneck and growth model (supplementary 
figure S2c, Supplementary Material online), with a population 
bottleneck of νB = 0.25, followed by a population expansion 
to νF = 1.0. The time of the past bottleneck was set at 
T = 0.2, and the level of inbreeding was varied with 
F ∈ {0.1, 0.5, 0.9}. Inbreeding was introduced using the self
ing rate, set to s = 2F

1+F. Twenty-five independent simulations 
were conducted, with 20 individuals sampled for each replicate. 
Simulation parameters were Ne = 1,000, L = 2 × 106 bp, 
μ = 5 × 10−6, and r = 2.5 × 10−6, with a burn-in of 10,000 
generations.

To create low-pass datasets, we used synthetic diploid ge
nomes. For each simulation replicate, we generated a random 
reference genome spanning 10 Mb with a GC content of 40%, 
resembling the human genome. Mutations were incorporated 
by altering single nucleotides at the positions observed in the 
SNP matrix generated during each simulation, assuming that 
all sites were biallelic. Diploid individual genomes were gener
ated by randomly selecting two chromosomes from the popu
lation pool.

Using the synthetic individual genomes as templates, we si
mulated 126 bp paired-end short reads for each individual 
with InSilicoSeq v2.0.1. (Gourlé et al. 2019). We calculated 
the number of reads per scenario as LC/R, where L is the gen
ome length, C the coverage depth, and R the read length. 

Reads for each diploid chromosome were simulated with 
equal probability. Depth of coverage per individual was 
sampled from a normal distribution with means of 3, 5, 10, 
and 30 and corresponding standard deviations of 0.3, 0.5, 1, 
and 3 to explore coverage variability, which increased with 
coverage levels. These standard deviations were selected based 
on preliminary simulations that suggested they offer a realistic 
variance for each coverage level.

For each individual, we aligned simulated reads to the refer
ence genome using BWA v0.7.17 (Li et al. 2009). We then 
processed the aligned reads with SAMTools v1.10 (Li 2013) 
to perform sorting, indexing, and pileup generation. To gener
ate GATK spectra, we used the GATK multisample approach 
via HaplotypeCaller v4.2 (McKenna et al. 2010; Van der 
Auwera and O’Connor 2020). To minimize false positives, 
the identified variants underwent filtering based on GATK’s 
Best Practices guidelines, with thresholds tailored to expected 
error rates and variant quality. These thresholds included 
depth-normalized variant confidence (QD < 2.0), mapping 
quality (MQ < 40), strand bias estimate (FS > 60.0), and 
strand bias (SOR > 10.0). The filtered SNP VCF files were sub
sequently used in demographic inference analyses to estimate 
population parameters based on the AFS of these variants. 
To generate ANGSD spectra, we used the BAM files contain
ing information about each individual with reads aligned to 
the reference genome. Subsequently, realAFS was used to esti
mate a maximum-likelihood AFS through the EM algorithm. 
The ANGSD v0.94 analysis was conducted with the following 
parameters: doSaf = 1 enabled the calculation of site allele 
frequency likelihoods, minMapQ = 30 set a minimum mapping 
quality score of 30 to filter low-quality alignments, minQ = 20 
applied a minimum base quality score of 20 to exclude low- 
quality bases, and GL = 2 specified the genotype likelihood 
model (using model 2, which is the GATK-like model).

Empirical Subsampling of Human Data
We used high-quality whole-genome sequencing data (30×) 
from the 1000 Genomes Project (1kGP), sourced from The 
International Genome Sample Resource data portal (https:// 
www.internationalgenome.org/ Fairley et al. 2020). The 
data comprised CRAM files aligned to the GRCh38 human 
reference genome. We focused on two sets of samples for 
our analysis: 10 randomly selected individuals from the 
Yoruba from Ibadan, Nigeria (YRI) samples and 10 from 
the Utah residents with Northern and Western European ances
try (CEU) samples. The specific individuals included for the YRI 
were NA18486, NA18499, NA18510, NA18853, NA18858, 
NA18867, NA18878, NA18909, NA18917, NA18924, and 
for the CEU NA07037, NA11829, NA11892, NA11918, 
NA11932, NA11994, NA12004, NA12144, NA12249, and 
NA12273. Additionally, for a single-population demographic 
model, 20 YRI individuals were analyzed, which includes 
the initial 10 plus an additional 10 samples: NA19092, 
NA19116, NA19117, NA19121, NA19138, NA19159, 
NA19171, NA19184, NA19204, and NA19223.

Initially, we converted the CRAM files to BAM format and 
indexed them using Picard tools (https://broadinstitute.github. 
io/picard/). We then isolated reads from chromosome 20 at the 
original 30× coverage, which we subsequently subsampled to 
10×, 5×, and 3× coverage using samtools v.1.10 (Li 2013) to 
emulate varying sequencing depths. Next, using GATK ver
sion 4.2.5 HaplotypeCaller (McKenna et al. 2010; Van der 
Auwera and O’Connor 2020), we called SNPs and indels 
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from these varying coverage depths for each population. We 
employed multisample SNP calling, merging BAM files with 
identical coverage prior to processing with HaplotypeCaller. 
This approach yielded a raw output VCF file.

We also carried out a single-sample calling procedure. For 
this, individual BAM files were used directly as inputs for 
the GATK HaplotypeCaller with the -ERC GVCF flag to en
able GVCF mode. Following this, we used GATK 
GenomicsDBImport to compile the individual variant calls 
into a cohesive data structure. This setup allowed us to con
duct joint genotyping using GATK GenotypeGVCFs, ultim
ately producing a multisample VCF.

Following SNP calling, we employed GATK SelectVariants 
to filter out indels for both approaches, retaining only SNPs. 
Quality filtering of SNPs was conducted using GATK 
VariantFiltration, applying criteria such as depth-normalized 
variant confidence (QD < 2.0), mapping quality (MQ < 40), 
strand bias estimate (FS > 60.0), and overall strand bias 
(SOR > 10.0). After quality filtering, the VCF files were anno
tated with ancestral allele information using the vcftools 
fill-aa module, based on data from the Ensembl Release 
110 Database (Danecek et al. 2011).

Finally, we used ANGSD to generate an AFS by using BAM 
files as input. The sample allele frequencies were first estimated 
using ANGSD’s -doSaf flag, using GATK genotype likeli
hoods. These likelihoods were then used to calculate the AFS 
via the EM algorithm using ANGSD’s realAFS program. In 
this way, we maintained the original sample sizes from the 
BAM files, resulting in AFS for 40 chromosomes in the single- 
population analysis and 20 chromosomes per population in 
the two-population analysis. ANGSD v0.94 analysis was exe
cuted with the following settings: doSaf = 1, minMapQ = 30, 
minQ = 20, and GL = 2. We used winsfs v0.7 to generate AFS 
based on site allele frequency likelihoods calculated with 
ANGSD, using its default parameters. We also generate AFS 
using winsfs, based on site allele frequency likelihoods com
puted with ANGSD.

Demographic Inference Using dadi
We used dadi (Gutenkunst et al. 2009) to fit demographic 
models to simulated and empirical datasets. For the GATK 
spectra, we used the VCF files as input and subsampled indi
viduals to accommodate missing data. For the ANGSD spec
tra, we used them as input directly. Within dadi, we used 
three demographic models for the simulated datasets: (i) an 
exponential growth model: dadi.Demographics1D. 
growth; (ii) a divergence model with migration fixed to 
zero: dadi.Demographics2D.split_mig; (iii) an bottle
neck then exponential growth model modified to incorporate 
inbreeding: dadi.Demographics1D.bottlegrowth. For 
the human datasets, we used two models: (i) a divergence with 
migration model: dadi.Demographics2D.split_mig 
and (ii) an instantaneous growth model: dadi.Demogra 
phics1D.two_epoch. The extrapolation grid points were 
set using the formula [ max (ns) + 120, max (ns) + 130, 
max (ns) + 140], where ns is the sample size of the AFS. Our 
low-pass correction is also implemented in dadi-cli (Huang 
et al. 2023).

Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.
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Data Availability
The correction for low-pass sequencing is implemented in the 
dadi Python package (https://bitbucket.org/gutenkunstlab/ 
dadi) and in the corresponding dadi-cli command-line inter
face (https://github.com/xin-huang/dadi-cli). The codebase 
for creating and analyzing both simulated and empirical data
sets is on GitHub at https://github.com/emanuelmfonseca/low- 
coverage-sfs and https://github.com/lntran26/low-coverage-sfs/ 
tree/main/empirical_analysis. Furthermore, we provide a user 
guide to help users implement our methodology on the dadi 
webpage (https://dadi.readthedocs.io/en/latest/user-guide/low- 
pass). The empirical data were downloaded from The 
International Genome Sample Resource data portal (https:// 
www.internationalgenome.org Fairley et al. 2020).
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