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Abstract
Inferring past demographic history of natural populations from genomic data is of central concern in many studies 
across research fields. Previously, our group had developed dadi, a widely used demographic history inference meth
od based on the allele frequency spectrum (AFS) and maximum composite-likelihood optimization. However, dadi’s 
optimization procedure can be computationally expensive. Here, we present donni (demography optimization via 
neural network inference), a new inference method based on dadi that is more efficient while maintaining compar
able inference accuracy. For each dadi-supported demographic model, donni simulates the expected AFS for a range 
of model parameters then trains a set of Mean Variance Estimation neural networks using the simulated AFS. Trained 
networks can then be used to instantaneously infer the model parameters from future genomic data summarized by 
an AFS. We demonstrate that for many demographic models, donni can infer some parameters, such as population 
size changes, very well and other parameters, such as migration rates and times of demographic events, fairly well. 
Importantly, donni provides both parameter and confidence interval estimates from input AFS with accuracy com
parable to parameters inferred by dadi’s likelihood optimization while bypassing its long and computationally inten
sive evaluation process. donni’s performance demonstrates that supervised machine learning algorithms may be a 
promising avenue for developing more sustainable and computationally efficient demographic history inference 
methods.
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Introduction
Inferring demographic history from genomic data has be
come routine in many research fields, from elucidating the 
anthropological origins and migration patterns of modern 
and archaic human populations (Gutenkunst et al. 2009; 
Bergström et al. 2020; Gopalan et al. 2022; Marchi et al. 
2022), to inferring the population genetic trajectories of en
dangered animals (Mays Jr et al. 2018; Miller-Butterworth 
et al. 2021; Chavez et al. 2022). Accounting for demographic 
history is also essential in setting the appropriate back
ground for detecting signals of natural selection (Nielsen 
et al. 2005; Boyko et al. 2008; Kim et al. 2017), disease asso
ciations (Mathieson and McVean 2012), and recombination 
hotspots (Johnston and Cutler 2012). Due to the wide range 
of possible demographic models and high dimensionality of 
genome sequence data, such analysis often involves compu
tationally expensive modeling. As the size of genomic data
sets rapidly grows to thousands of full genomes, there is a 
great need for more efficient and scalable methods for ex
tracting information from such datasets.

One class of widely used methods infers demographic 
history from sequence data summarized as an allele fre
quency spectrum (AFS). An AFS is a multidimensional array 
with dimension equal to the number of populations being 
considered in a given demographic model. Each array entry 
is the number of observed single-nucleotide polymorphisms 
(SNP) with given frequencies in the sampled populations. 
For example, the [1,2] entry would count SNPs that were 
singletons in the first population and doubletons in the se
cond. A major advantage of using the AFS as a summary 
statistic is the ease of scaling to whole-genome data 
(Marchi et al. 2021), as it efficiently reduces the high dimen
sionality of population genomic data. AFS-based inference 
methods are, therefore, often fast and suitable for exploring 
many demographic models (Spence et al. 2018). Given its 
wide use in countless empirical studies, much progress 
has been made towards understanding the theoretical guar
antees and limitations of the AFS and AFS-based inference 
(Myers et al. 2008; Achaz 2009; Bhaskar and Song 2014; 
Terhorst and Song 2015; Baharian and Gravel 2018).
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Demographic inference methods based on the AFS often 
work by maximizing the composite likelihood of the ob
served AFS under a user-specified demographic history mod
el with parameters such as population sizes, migration rates, 
and divergence times (Coffman et al. 2016). The expected 
AFS can be computed via a wide range of approaches 
(Gutenkunst et al. 2009; Naduvilezhath et al. 2011; Lukić 
and Hey 2012; Excoffier et al. 2013; Jouganous et al. 2017; 
Kamm et al. 2017; Kern and Hey 2017) with varying degrees 
of computational expense, model flexibility, and scalability. 
Because this is the most computationally intensive step in 
the procedure, new methods developed thus far have fo
cused on devising algorithms to speed up AFS calculation 
(Jouganous et al. 2017; Kamm et al. 2017, 2020). However, 
not much attention has been given to optimizing how the 
computed AFS is stored and used for inference. In a typical 
likelihood optimization procedure, hundreds to thousands 
of expected AFS are computed and compared to the data 
to obtain the best-fit parameter set. These generated AFS 
and their corresponding demographic parameters contain 
information regarding the mapping between the AFS and 
demographic parameters but are discarded after each opti
mization run. As there are often a few common demograph
ic models regularly used across studies, if these simulated 
data could be captured, stored, and distributed for future 
use, individual groups as well as the research community 
as a whole could save a lot of time and computational effort 
by avoiding unnecessary repetition.

The mapping between the AFS and its associated demo
graphic history model parameters can be efficiently cap
tured by supervised machine learning (ML) algorithms. 
Given a training dataset with feature vectors (AFS—input) 
and labels (demographic history parameters—output), 
these algorithms can learn the function mapping from 
the input to the output. While training ML algorithms 
can be computationally intensive up front, subsequent in
ference from trained models will have minimal cost 
(Schrider and Kern 2018). ML algorithms have been widely 
adopted in population genetics over the past decade, 
thanks to their efficiency and flexibility. Several studies 
have used supervised ML algorithms such as random forest 
(RF) and multilayer perceptron (MLP) with AFS as training 
data for demographic model selection and demographic 
parameter inference (Sheehan and Song 2016; Smith 
et al. 2017; Lorente-Galdos et al. 2019; Mondal et al. 
2019; Villanea and Schraiber 2019; Sanchez et al. 2021). 
In Smith et al. (2017) specifically, the RF algorithm was 
used to replace the rejection step in the approximate 
Bayesian computation (ABC) framework, significantly im
proving overall efficiency (Pudlo et al. 2016). This improve
ment in efficiency was in part due to more efficient use of 
simulated data. Whereas in a typical ABC procedure, any 
simulations beyond a threshold of difference to the data 
will be discarded, there all simulations were used as input 
for training the RF classification algorithm. The same prin
ciple can be applied in the maximum-likelihood optimiza
tion and regression framework, where an ML algorithm 
can be trained by simulated AFS to provide estimates of 

demographic parameter values, bypassing likelihood 
optimization.

New Approaches
Here, we introduce donni (Demography Optimization via 
Neural Network Inference), a supervised ML extension to 
dadi, a widely used AFS-based method for inferring models 
of demographic history (Gutenkunst et al. 2009) and natural 
selection (Kim et al. 2017). dadi computes the expected AFS 
by numerically solving a diffusion approximation to the 
Wright–Fisher model and uses composite-likelihood maxi
mization to fit the model to the data. While the initial im
plementation of the software could only handle up to three 
populations, a recent update supports up to five popula
tions (Gutenkunst 2021). donni uses dadi to generate AFS 
and demographic parameter labels for training Mean 
Variance Estimation (MVE) networks (Nix and Weigend 
1994) (Fig. 1). Researchers can then use donni’s trained 
MVE networks to instantaneously infer the parameter va
lues and their associated uncertainty from future AFS input 
data, obviating the need for likelihood optimization. donni 
supports a wide range of common demographic parameters 
that dadi supports, including population sizes, divergence 
times, continuous migration rates, inbreeding coefficients, 
and ancestral state misidentification ratios. We show that 
donni has inference accuracy comparable to dadi but re
quires fewer computational resources, even after account
ing for the cost of training the MVE networks. Our library 
of trained networks currently includes all demographic 
models in the dadi API as well as the models from Portik 
et al. (2017) pipeline. The supported sample sizes are 10, 
20, 40, 80, and 160 haplotypes per population (up to 20 hap
lotypes only for three-population models). For users who 
only need to use the trained networks for available demo
graphic models, almost no computation is required. For 
users who require custom models, we also provide our 
command-line interface pipeline for generating trained 
models that can save time compared to running likelihood 
optimization with dadi. Furthermore, the custom models 
produced can be contributed to our growing library and 
shared with the community.

Results
Choice of MVE Network for Demographic History 
Model Parameter Estimation with Uncertainty
We wanted to develop a supervised ML method that can 
infer not only the demographic history parameters but 
also their associated uncertainties. Uncertainty estimation 
has not been the focus of previous supervised neural- 
network-based approaches in demographic history inference 
(Sheehan and Song 2016; Flagel et al. 2019). There are 
several techniques for constructing a prediction interval 
from neural-network-based point estimation as reviewed 
by Khosravi et al. (2011). Among them, the MVE method 
is one of the most conceptually straightforward and least 
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computationally demanding, which are important factors 
for our goal of improving efficiency.

An MVE network is a feedforward neural network with 
two output nodes, one for the prediction mean and one 
for the prediction variance (Fig. 1e). This approach provides 
an uncertainty estimate in a regression setting by assuming 
that the errors are normally distributed around the mean 
estimation. For demographic history inference, the mean is 
the value of the demographic history model parameter we 
want to infer. We can construct confidence intervals using 
the normal distribution defined by the output mean and 
variance estimates. There are different implementations of 
the feedforward network architecture for MVE network 
(Sluijterman et al. 2023). Our implementation is a fully con
nected network, similar to the MLP, in which all hidden layer 
weights are shared by the mean and variance output nodes.

Variance in Allele Frequencies Affects donni Training 
and Performance
Since the AFS is the key input data in our method, we first 
considered how different levels of variance in the training 
data AFS might affect training and performance of the 
MVE networks underlying donni. While the expected AFS 
computed by dadi under a given set of demographic model 
parameter gives the mean value of each AFS entry, AFS sum
marized from observed data will have some variance. We 
asked whether training the network on AFS with some level 
of variance or AFS with no variance would lead to better overall 
performance. When generating AFS simulations, we modeled 
such variance in the AFS by Poisson-sampling from the ex
pected AFS (examples in supplementary figs. S1 and S2B-D, 
Supplementary Material online.) We implemented four levels 
of AFS data variance: none, low, moderate, and high in AFS 

used for training and testing. We then surveyed the inference 
accuracy for all pairwise combinations for each type of vari
ance in training sets versus test sets.

Overall, we found that networks trained on AFS with 
no to moderate level of variance perform similarly across 
all variance levels in test AFS (supplementary figs. S3–S6, 
Supplementary Material online for the split-migration model). 
High variance in training AFS led to substantially poorer infer
ence accuracy in parameters that are more difficult to infer, 
such as time and migration rate. The population size change 
and ancestral state misidentification parameters were the 
least affected by AFS variance, and inference accuracy re
mained similarly high across all variance scenarios. For the 
time parameter, training on AFS with moderate variance pro
duced the best-performing accuracy across all test cases 
(supplementary fig. S4, Supplementary Material online). 
However, for the migration rate parameter, training on AFS 
with no variance produced the overall best-performing accur
acy (supplementary fig. S5, Supplementary Material online). 
We concluded that for subsequent analyses and model library 
production for donni, we would train using AFS with no vari
ance, since there was no clear benefit from adding an extra 
variance simulation step in training. For test AFS, we would 
use AFS with moderate level of data variance to better match 
real data.

donni is Efficient and has Comparable Inference 
Accuracy to dadi
Since we built donni to be an alternative to dadi’s likeli
hood optimization, we compared with dadi in our per
formance analysis. We validated the inference accuracy 
of donni for three models: a two-population model with 
an ancestral population split and symmetric migration 

a b c d e f

Fig. 1. Schematic of the workflow for training and testing donni. For a given demographic model a), we drew sets of model parameters b) from a 
biologically relevant range (supplementary table S1, Supplementary Material online). Each parameter set represents a demographic history and cor
responds to an expected AFS. These parameters were input into simulator programs c) to generate training and test AFS d). We use the expected AFS 
simulated with dadi and their corresponding parameters as training data for donni’s MVE networks e). We generated test data either by Poisson 
sampling from dadi-simulated AFS or by varying recombination rates with msprime, resulting in a change in test data variance compared to training 
AFS. The output of donni’s trained networks includes both inferred parameters and their confidence intervals f).
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between the populations (split-migration model, Fig. 2a), a 
one-population model with one size change event (two 
epoch model, Fig. 3a), and a three-population model for 
human migration out-of-Africa (the OOA model, Fig. 5a) 
from Gutenkunst et al. (2009). We also compared the com
putational efficiency of donni and dadi for two different 
sample sizes of the split-migration model.

For the split-migration model, donni was able to infer all 
demographic history parameters with accuracy comparable 
to dadi (Fig. 2b-i). The population size change parameters ν1 
and ν2 were inferred very well by both donni (Fig. 2b,c) and 
dadi (Fig. 2f,g). The time parameter T (Fig. 2d,h) and migra
tion rate m (Fig. 2e,i) were more difficult to accurately infer 
for both methods, with dadi having trouble optimizing par
ameter values close to the specified parameter boundary 
(Fig. 2e). We used Spearman’s correlation coefficient ρ to 

quantify the monotonic relationship between the true 
and the inferred parameter values, similar to Flagel et al. 
(2019). For a more direct measurement of inference accur
acy, we also provide the RMSE scores for all models in 
supplementary table S1, Supplementary Material online.

To compare the efficiency of donni and dadi, we bench
marked the computational resources required by each 
method to infer demographic parameters from the same 
100 test AFS (Fig. 2j-k). Since inferring parameters with don
ni’s trained networks is computationally trivial, we instead 
measured the resources required by donni to generate 
trained networks. For both methods, computation was sub
stantially more expensive as the sample size increased from 
20 haplotypes to 160. For dadi (Fig. 2j), there was a spread of 
optimization runtime among the 100 test AFS, with several 
difficult spectra requiring more than 500 CPU hours to 
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Fig. 2. Inference accuracy and computing time of donni and dadi for a two-population model. a) The two-population split-migration model with 
four parameters: ν1 and ν2 are relative sizes of each population to the ancestral, T is time of split, and m is the migration rate. b-i) Inference 
accuracy by donni b-e) and dadi f-i) for the four parameters on 100 test AFS (sample size of 20 haplotypes). j) Distribution of optimization times 
among test datasets for dadi. k) Computing time required for generating donni’s trained networks for two sample sizes. Generate data include 
computing time for generating 5,000 dadi-simulated AFS as training data. Tuning & training is the total computing time for hyperparameter 
tuning and training the MVE network using the simulated data.
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reach convergence for both sample sizes. By comparison, 
the computation required for donni (Fig. 2k), including gen
erating training data with dadi, hyperparameter tuning and 
training, was less than the average time required for running 
dadi optimization on a single AFS. This result suggests that 
donni may benefit many cases where dadi optimization can 
take a long time to reach convergence.

Figure 2k also suggests that generating the expected AFS 
with dadi is computationally expensive, often equivalent to 
if not more so than tuning and training a network. Such ex
pensive operations are indeed what we aimed to minimize 
with donni. During each dadi optimization, a large number 
of expected AFS are also calculated. As opposed to discard
ing all these expensive calculations after each dadi optimiza
tion, donni’s trained network effectively captures the 
mapping between the expected AFS and demographic his
tory model parameter values in its network weights, which 
can be reused instantaneously in the future.

donni Accurately Estimates Uncertainty of Inferred 
Parameter Values
Sometimes, demographic model parameters may be uniden
tifiable, because multiple parameter sets generate nearly 
identical AFS. As a simple example, we considered the one- 
population two epoch model (Fig. 3a), which is parameter
ized by the relative size ν of the contemporary population 
and the time at which the population size changed T. For 
this model, donni inferences are inaccurate when T/ν is large 
(Fig. 3b-c). In this parameter regime, over the time T after the 

size change, the AFS relaxes back to that of an constant-sized 
equilibrium population. Therefore, in this case, the true para
meters are unrecoverable because the AFS itself does not 
have the appropriate signal to infer them. While this prob
lem may be avoided if users follow the best practice for mod
el selection of exploring simpler models before complex ones 
(Marchi et al. 2021), it also highlights the need for uncer
tainty quantification, where a wide confidence interval 
would appropriately indicate problematic inference.

Using the prediction variance output from the trained 
MVE networks, donni can calculate any range of confidence 
intervals specified by the user for each inferred parameter. 
We validated our uncertainty quantification approach by 
measuring the observed coverage for six confidence inter
vals: 15, 30, 50, 75, 80, and 95% intervals (details in 
Materials and Methods). For the two-epoch model, our ap
proach provided well-calibrated confidence intervals 
(Fig. 3d). Considering individual test AFS, the uninformative 
AFS yielded appropriately wide confidence intervals 
(Fig. 3e-f, yellow points). We found that confidence intervals 
were similarly well calibrated for the split-migration model 
(supplementary fig. S7, Supplementary Material online).

donni is not Biased by Linkage between Alleles
The Poisson Random Field model underlying dadi (Sawyer 
and Hartl 1992) and thus donni assumes independence of 
all genomic loci in the data, which is equivalent to assum
ing infinite recombination between any pair of loci. But 
loci within close proximity on the same chromosome are 

b c d

e f

T

Time

v
a

Fig. 3. Uninformative AFS affecting inference accuracy and uncertainty quantification method validation. a) The one-population two-epoch 
model with two parameters, ν for size change and T for time of size change. b-c) Inference accuracy for ν and T by donni on 100 test AFS, colored 
by simulated Tν values. d) Confidence interval coverage for ν and T by donni. The observed coverage is the percentage of test AFS that have the 
simulated parameter values captured within the corresponding expected interval. e-f) As an example, we show details of the 95% confidence 
interval data points from panel d for 100 test AFS. The simulated values for ν e) and T f) of these AFS are colored by their T

ν values, similar to 
panels b-c. donni’s inferred parameter values and 95% confidence interval outputs are in brown. The percentage of simulated color dots lying 
within donni’s inferred brown interval gives the observed coverage at 95%. The light shades are the simulated parameter range (supplementary 
table S2, Supplementary Material online) used in simulating training and test AFS. The 100 test AFS are sorted along the x axis using true Tν values.
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likely sorted together during recombination and therefore 
linked. To assess how linkage affects donni inference, we 
tested donni’s networks that were trained on dadi- 
simulated AFS without linkage on test AFS simulated 
with msprime, a coalescent simulator that includes linkage 
(Baumdicker et al. 2022). These msprime-simulated test 
AFS (examples in supplementary figs. S1B and S2E-G, 
Supplementary Material online) represent demographic 
scenarios similar to those in dadi but also include varying 
levels of linkage under a range of biologically realistic 
recombination rates. Since smaller recombination rates 
lead to more linkage and further departure from the 
training data assumption, we tested donni on AFS with de
creasingly small recombination rates down to r = 10−10 

crossover per base pair per generation, which is two orders 
of magnitude smaller than the average recombination rate 
in humans.

Population size parameters ν were inferred well no matter 
the recombination rate, but the inference accuracy for T and 
m decreased as the recombination rate decreased (Fig. 4). 
Confidence intervals were well calibrated at the higher 
recombination rates (Fig. 4a,e), but too small at the lowest 
recombination rate (Fig. 4i). These patterns are similar to 
those we found when testing the effects of AFS variance 

by Poisson-sampling from expected AFS with dadi 
(supplementary figs. S3–S7, Supplementary Material online), 
where accuracy decreased with higher variance, and confi
dence intervals were underestimated at the highest variances. 
Note that at r = 10−10, linkage disequilibrium often extends 
entirely across the simulated test regions, so in this regime 
methods assuming zero recombination, such as IMa3 (Hey 
et al. 2018), may be more appropriate. Importantly, even 
though more linkage did lead to higher prediction variance 
in the estimated parameter values, we did not observe bias 
in our inferences.

Comparison with dadi for the OOA Model
We tested donni on the three-population OOA model 
with six size change parameters, four migration rates, 
and three time parameters (Fig. 5a). In general, we ob
served a similar pattern to previous models; size change 
parameters were often easier to infer than times or migra
tion rates (Fig. 5). For example, both donni and dadi 
showed near perfect inference accuracy for νAf (Fig. 5b,g). 
They both also performed well for the for νEu, νAs, and misid 
parameters (supplementary fig. S8, Supplementary Material
online). But several parameters were challenging for 
both methods, including some size change parameters, 

Inferrence accuracyConfidence interval
coveragea b c d

e f g h

i j lk

r = 10-8

r = 10-9

r = 10-10

Fig. 4. donni’s inference accuracy and uncertainty quantification coverage on msprime-simulated test AFS with linkage. Each row shows the 
confidence interval coverage and inference accuracy for select parameters of the split-migration demographic model (Fig. 2a) at varying recom
bination rate. Recombination rate decreases from top to bottom row, corresponding to increased linkage and data variance in the msprime- 
simulated test AFS. The same networks (trained on dadi-simulated AFS) were used in this analysis as in Fig. 2f-i.
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such as νAs0 (Fig. 5c,h), νB, and νEu0 (supplementary fig. S8, 
Supplementary Material online). The time parameters 
proved to be the most challenging with relatively lower 
accuracy for both methods, with TAf (Fig. 5d,i) and TB 
(supplementary fig. S8, Supplementary Material online) being 
particularly difficult. Overall, both methods agree on the 
parameters that are easy versus difficult to infer.

However, when inference accuracy is poor on difficult 
parameters, dadi and donni tend to have different failure 
patterns. For instance with the mAfB parameter, dadi tended 
to get stuck at the parameter boundaries for many AFS 
(Fig. 5j), while donni essentially inferred the average value 
for all test AFS (Fig. 5e). This indicates a failure by donni to 
learn any information from the training AFS for this particu
lar parameter. For all other migration rate parameters in the 
model, donni performs well, matching dadi (supplementary 
fig. S8, Supplementary Material online).

While performance varied between the two methods 
among parameters, donni still had comparable accuracy to 
dadi in most cases. donni was also able to produce well 
calibrated confidence intervals for all parameters (Fig. 5f). 
Due to the computational expense of dadi optimization 
for this model, we only analyzed 30 test AFS for direct com
parison between donni and dadi. Since donni is not as com
putationally constrained, we also tested donni on all 1,000 
test AFS per our standard procedure, finding similar results 
(supplementary table S1, Supplementary Material online).

Finally, we investigated the empirical AFS data from 
Gutenkunst et al. (2009) using donni’s trained MVE net
works for the OOA demographic model (supplementary 
table S3, Supplementary Material online). We found that 
donni’s estimates differ from dadi’s to varying degrees 
across the parameters. The similarity in accuracy pattern 
between donni and dadi in Fig. 5 and supplementary fig. 

S8, Supplementary Material online does not translate to 
similar inference values between the two approaches on 
these data. For example, donni and dadi have similarly 
high accuracy patterns for νAs but have very different esti
mates on the empirical AFS data (νAs = 7.29 for dadi and 
νAs = 1.276 for donni). For this model, donni also tends to 
infer a stronger migration rate than dadi does, with a high
er estimate across all four migration rate parameters. 
Despite these differences in the estimated parameter va
lues, dadi’s estimates are within donni’s 95% confidence in
tervals for all parameters.

donni’s Trained Networks are Accessible
Given its speed, we expect that donni will be useful for quickly 
exploring many demographic scenarios given a user’s dataset. 
To support this, we have produced trained networks for a 
large collection demographic history models. These include 
five one-population and eight two-population models from 
the current dadi API, plus the 34 two-population and 33 
three-population models from Portik et al. (2017). For each 
of these models, we provide trained networks for unfolded 
and folded AFS for each of five sample sizes (only two sample 
sizes for three-population models). For large-scale produc
tion, we developed a comprehensive command-line interface 
pipeline for generating training data, tuning hyperpara
meters, and assessing the quality of the trained networks. 
donni’s pipeline is open-source and available on GitHub 
(https://github.com/lntran26/donni) for users interested in 
training custom models. The trained network library is avail
able on CyVerse (Center 2011; Merchant et al. 2016) and don
ni’s command-line interface will automatically download 
appropriate networks. The library also includes all accuracy 
and confidence interval coverage plots for all supported 
demographic history models.

a b c d e

f g h i j

Fig. 5. Inference accuracy compared with dadi and confidence interval coverage by donni for the OOA demographic model. a) The three- 
population OOA model with 14 demographic history parameters. b-e) Inference accuracy for representative parameters on 30 simulated 
test AFS inferred by donni. g-j) Inference accuracy for the same parameters and 30 test AFS inferred by dadi. Each of the 30 test AFS is repre
sented by a different color dot. For the accuracy of the rest of the parameters see supplementary fig. S8 and table S1, Supplementary Material
online. f) donni confidence interval coverage for all model parameters.
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Discussion
We addressed dadi’s computationally intensive optimiza
tion procedure by developing donni, a new inference 
method based on a supervised ML algorithm, the MVE 
network. We found that donni’s trained MVE networks 
can instantaneously infer many demographic history para
meters with accuracy comparable to dadi on simulated 
data. Even when including computing time required for 
training the network networks, for many cases donni is fas
ter than dadi’s maximum-likelihood optimization. Users 
are also provided a confidence interval for each inferred 
demographic history model parameter value from donni. 
Through examples of one-, two-, and three-population 
demographic models, we demonstrated that donni’s un
certainty quantification method works well for a wide 
range of demographic parameters. We also showed that 
donni works well for AFS simulated by msprime, which in
cludes linkage.

Our approach of using supervised ML to reduce the 
computational expense of the maximum-likelihood opti
mization step is similar in spirit to Smith et al. (2017) using 
RFs to improve the efficiency of the computationally inten
sive ABC procedure. While Smith et al. (2017) developed a 
classification approach for demographic model selection, 
our method is a regression approach, where we provide a 
suite of pretrained regressors for many commonly used 
demographic history models. Users can quickly explore 
many possible scenarios and get an estimate for several 
demographic parameters based on their input AFS data. 
However, we caution users to always start with simpler 
models first before trying more complex ones, to avoid ex
acerbating the uninformative parameter space problem. 
While we have implemented an accompanying uncertainty 
quantification tool to aid in identifying such problematic 
scenarios, best practices in model-based inference should 
still be followed.

Our choice of AFS as input data for training the network 
algorithm has several limitations. First, because the size of 
the AFS depends on the sample size but the network requires 
a fixed input size, we have to train a different set of networks 
for different sample sizes within the same demographic his
tory model. Different sets of trained networks are also re
quired for unfolded versus folded AFS. We have limited our 
trained network library to sample sizes of 10, 20, 40, 80, and 
160 haplotypes per population. User data that does not 
match exactly these sample sizes will be automatically down- 
projected (Marth et al. 2004) by donni to the closest available 
option, leading to some data loss. It is, however, possible to 
use donni’s pipeline to train custom models that can support 
a different sample size. We also verified that donni still pro
vides accurate inference and well-calibrated confidence inter
vals on down-projected data (supplementary fig. S9, 
Supplementary Material online).

Second, for optimal network performance, we need to 
normalize the AFS data for training, leading to the loss 
of information about the parameter θ = 4NaμL, where 
Na is the ancestral effective population size, μ is the 

mutation rate, and L is the sequence length. Estimating θ 
is required for converting all demographic parameters in 
genetic units to absolute population sizes and divergence 
times. While donni can provide a point estimate for θ, it 
cannot provide the uncertainty, which is necessary for es
timating the uncertainty of absolute parameter values. 
This limitation can be overcome with a hybrid approach 
between donni and dadi, where donni’s inferred parameter 
outputs become the starting point for dadi’s optimization 
procedure and uncertainty estimation (Coffman et al. 
2016). While this approach requires running likelihood op
timization, a good starting value provided by donni should 
reduce overall computing time. donni trains a separate 
MVE network for each parameter in a given demographic 
history model, even though the model parameters are cor
related. This is a limitation of our implementation, because 
the canonical MVE network architecture includes only one 
node for the prediction mean and one node for the predic
tion variance. It may be possible to add additional nodes to 
output prediction means, variances, and covariances from 
a single network, but we found that this often affects the 
overall inference quality of the trained MVE network. 
Additionally, we tested an alternative multioutput regres
sion approach (the scikit-learn Multilayer-Perceptron 
Regressor) and found that our single-output approach 
provided similarly accurate estimates (supplementary fig. 
S10, Supplementary Material online). To our knowledge, 
existing methods for estimating uncertainties of multiout
put neural network regressions are limited.

At its heart, the neural network approach of donni corre
sponds to a nonlinear regression of model parameters on 
AFS entries, in contrast to existing approaches which typic
ally maximize a composite likelihood through optimization. 
Neural networks can be used to estimate likelihoods 
(e.g. Tejero-Cantero et al. 2020), which could then be opti
mized or sampled over, but here we prefer the more direct 
regression approach. Although dadi and donni display com
parable overall accuracy (Figs. 2 and 5), they may differ when 
applied to any given dataset (supplementary table S3, 
Supplementary Material online), reflecting differences be
tween regression and composite-likelihood optimization.

In conclusion, our results indicate that using supervised 
ML algorithms trained with AFS data is a computationally 
efficient approach for inferring demographic history from 
genomic data. Despite implementation limitations discussed 
above, the AFS is fast to simulate compared with other types 
of simulated data such as genomic sequence images (Flagel 
et al. 2019; Sanchez et al. 2021) or coalescent trees (Kelleher 
et al. 2016; Baumdicker et al. 2022). Furthermore, while ig
noring linkage may be a weakness of AFS-based methods, 
it can also be a strength in that it is more species-agnostic 
and therefore trained models are transferable among species. 
A major challenge for AFS-based methods such as ours is the 
poor scaling to large sample sizes and number of popula
tions, where the AFS matrix becomes high dimensional 
and sparse, and simulation becomes prohibitively expensive. 
While we limited this study to three-population models, 
there have been major improvements in AFS-based methods 
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that can handle more (Jouganous et al. 2017; Kamm et al. 
2017, 2020; Gutenkunst 2021). Given our results, a super
vised ML approach might be a promising next step to extend 
to such AFS-based methods to further improve their com
putational efficiency.

Materials and Methods
Simulations with dadi
We used dadi v.2.3.0 (Gutenkunst et al. 2009) to simulate 
AFS for training and testing the networks. For each demo
graphic model, we uniformly drew parameter sets from a 
biologically relevant range of parameters (supplementary 
table S2, Supplementary Material online). We then gener
ated each expected AFS by specifying the demographic 
model and parameters in dadi. We calculated the extrapola
tion grid points used for dadi integration based on the num
ber of haplotypes per population according to Gutenkunst 
(2021) for one-population models. For models with more 
than one population, we used the same formula but also 
increased the grid points by a factor of 1.5 for each additional 
population. The demographic model parameter values are 
used as labels for the generated AFS data. To simulate AFS 
with different levels of data variance, we started with the 
original expected AFS set (no variance). We then Poisson- 
sampled from the expected AFS to generate a new AFS 
with variance. We controlled the level of variance by the par
ameter θ, by which we multiplied the expected AFS before 
sampling. We used θ = 10,000, 1,000, and 100 corresponding 
to low, moderate, and high levels of variance, respectively 
(supplementary figs. S3–S7, Supplementary Material online). 
Intuitively, modifying θ = 4NaμL is equivalent to altering the 
effective number of sites surveyed L. Assuming μ ∼ 10−8 and 
Na ∼ 104, θ = 1,000 is equivalent to L ∼ 2.5 × 106 sites. 
Smaller θ is equivalent to fewer sites surveyed, hence noisier 
AFS. Finally, we normalized both expected and Poisson- 
sampled AFS for training and testing. The results shown in 
Figs. 2, 3, 5 and supplementary fig. S8, Supplementary 
Material online are based on unfolded AFS with sample 
size of 20 haplotypes per population.

Simulations with msprime
We used msprime v1.2.0 (Baumdicker et al. 2022) to simulate 
AFS from demographic history models while including link
age. We first specified dadi-equivalent demography in 
msprime for the two epoch and split-migration models. 
This included the population size change ratio ν and time 
of change T parameters for the two epoch model, and popu
lation size change ratios ν1 and ν2, time T of split, and migra
tion rate m for the split-migration model. We then specified 
additional parameters required for msprime to yield 
θ = 4NALμ = 40,000, with ancestral population size 
NA = 10,000, sequence length L = 108 base pairs, and muta
tion rate μ = 10−8 per base pair per generation. We used 
three recombination rates 10−8, 10−9, and 10−10 per base 
pair per generation to simulate different levels of linkage 
and variance in the AFS. We then generated tree-sequence 

data with msprime before converting to the corresponding 
unfolded AFS of sample size 20 haplotypes per population 
and normalizing for testing with trained networks.

Network Architecture and Hyperparameter 
Optimization
We used TensorFlow v2.12.1 and Keras v2.12.0 to generate 
all-trained MVE networks for donni. These networks have 
two fully connected hidden layers containing between 4 
and 64 neurons. The exact number of neurons in each hid
den layer are hyperparameters that were automatically se
lected via our tuning procedure described below. The 
input layer is a flattened AFS with varying sizes depending 
on the sample size and whether it is a folded or unfolded 
AFS. The output layer has two nodes for the prediction 
mean and variance of one demographic history parameter. 
For tuning and training the network, we implemented a 
custom loss function based on the negative log-likelihood 
of a normal distribution:

L(θ) =
􏽘N

i=1

1
2

log σ2
θ(xi)

( 􏼁
+

1
2

(yi − μθ(xi))2

σ2
θ(xi)

.

Here θ denotes the set of network parameters (edge weights 
and node biases), and the sum is over training data AFS xi 
corresponding to true demographic parameter values yi. 
For each training AFS, the MVE network outputs a predic
tion mean μθ(xi) and variance σ2

θ(xi). During training, the 
network parameters θ are optimized to minimize the loss 
function, thus both improving parameter prediction accur
acy (through μθ) and uncertainty estimation (through σ2

θ).
For automatic hyperparameter tuning, we used the 

HyperBand and RandomSearch tuning algorithms available 
in keras-tuner v.1.4.6. The 5,000 AFS training dataset was split 
80% for training and 20% for validation. For a given network, 
we first used HyperBand to optimize both the hidden layer 
size and learning rate. We then kept the MVE network from 
HyperBand with the best performance on the validation 
data, froze the hidden layer size, and then continued tuning 
only the learning rate using RandomSearch. The MVE net
work with the best performance on the validation data after 
RandomSearch is then selected for subsequent training on 
the full training data. All hyperparameter configurations 
and nondefault settings for the tuning algorithms are listed 
in supplementary table S4, Supplementary Material online.

Uncertainty Quantification Coverage
For uncertainty quantification, the trained MVE network 
outputs a prediction variance for each inferred demo
graphic history parameter. The donni pipeline converts 
this variance to confidence intervals using the normal dis
tribution. To validate our uncertainty quantification 
method, we first obtained the method’s estimation for 
six confidence intervals, 15, 30, 50, 80, 90, and 95% on all 
test AFS. We then get the observed coverage by calculating 
the percentage of test AFS that have their corresponding 
simulated parameter value captured within the estimated 
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interval. The expected versus observed percentages are 
plotted in our confidence interval coverage plots.

donni Training and Testing Pipeline
We used 5,000 AFS (no data variance) for training and tuning 
and 1,000 AFS (moderate data variance, θ = 1,000) for accur
acy and uncertainty coverage validation. For visualization, only 
100 test AFS (30 AFS for the OOA model) are shown to com
pare with dadi. However, accuracy scores by donni on all 
1,000 test AFS are provided in supplementary table S1, 
Supplementary Material online. Our pipeline tunes and trains 
one network for each demographic model parameter and 
sample size. For example, the two epoch model with two 
parameters ν and T has 20 independently trained networks: 
2 networks for ν and T times 5 supported sample sizes times 
2 polarization states.

Likelihood Optimization with dadi-cli
To infer demographic parameters for a large number of 
test AFS in parallel (100 AFS for the split-migration model 
and 30 AFS for the OOA model), we used dadi’s 
command-line interface (Huang et al. 2023). We specified 
the upper and lower bound values for optimization based 
on the parameter range provided in supplementary table 
S2, Supplementary Material online. Optimization ran un
til convergence, as defined by δlog(L) = 0.0005 for the 
OOA model and δlog(L) = 0.001 for the split-migration 
model.

Benchmarking dadi Optimization and donni Pipeline
To benchmark the computational expense required for 
dadi optimization versus for training the networks, we 
used 10 CPUs on a single computing node for each task. 
For donni, the tasks are generating training AFS, hyper
parameter tuning with HyperBand, and training using 
the tuned hyperparameters. Estimating demographic 
parameters for 100 test AFS with donni’s trained networks 
is nearly instantaneous. For dadi, each test AFS is a task 
that was optimized until convergence, at which time was 
recorded, or until the specified cut-off time (50 h × 10  
CPUs =500 CPU h).

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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