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Abstract

Understanding the demographic history of populations is a key goal in population genetics, and with improving methods and data, ever
more complex models are being proposed and tested. Demographic models of current interest typically consist of a set of discrete popula-
tions, their sizes and growth rates, and continuous and pulse migrations between those populations over a number of epochs, which can re-
quire dozens of parameters to fully describe. There is currently no standard format to define such models, significantly hampering progress
in the field. In particular, the important task of translating the model descriptions in published work into input suitable for population genetic
simulators is labor intensive and error prone. We propose the Demes data model and file format, built on widely used technologies, to allevi-
ate these issues. Demes provide a well-defined and unambiguous model of populations and their properties that is straightforward to imple-
ment in software, and a text file format that is designed for simplicity and clarity. We provide thoroughly tested implementations of Demes
parsers in multiple languages including Python and C, and showcase initial support in several simulators and inference methods. An introduc-
tion to the file format and a detailed specification are available at https://popsim-consortium.github.io/demes-spec-docs/.
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Introduction
The ever-increasing amount of genetic sequencing data from ge-
netically and geographically diverse species and populations has
allowed us to infer complex demography and study life history at
fine scales. An integral component to such population genetics
studies is simulation. Software to either simulate whole-genome
sequences (Thornton 2014, 2019; Staab et al. 2015; Kelleher et al.
2016; Haller and Messer 2019; Baumdicker et al. 2022) or informa-
tive summary statistics of diversity (Gutenkunst et al. 2009;
Jouganous et al. 2017; Kamm et al. 2017) have enabled the increas-
ing complexity of genomic studies, with several software pack-
ages capable of handling large sample sizes, many interacting
populations, and deviations from panmictic random-mating
assumptions. This ability to infer and simulate such complex de-
mographic scenarios, however, has highlighted a major short-
coming in community standards: the fragmented landscape of
different ways to describe demographic models makes it difficult
to compare inferences made by different methods and to reliably
simulate from previously inferred models. Inference results are
typically reported in publications via a combination of visual

depiction, a list of key parameters in tabular form and a discus-

sion within the text. Unfortunately, these descriptions are often

ambiguous, and implementing the precise model inferred for

later simulation is at best tedious and error prone (Adrion et al.

2020; Ragsdale et al. 2020), and occasionally impossible because

of missing information.
Simulation is a core tool in population genetics, and many

methods have been developed over the past 3 decades (Carvajal-

Rodr�ıguez 2008; Liu et al. 2008; Arenas 2012; Hoban et al. 2012;

Yuan et al. 2012). Simulations are based on highly idealized popu-

lation models, and one of the key uses of inferred demographic

histories is to make simulations more realistic. Simulation meth-

ods take three broad approaches to specifying the demographic

model to simulate, using either a command line interface (e.g.

Hudson 2002; Hernandez 2008; Kern and Schrider 2016), a custom

input file format (e.g. Guillaume and Rougemont 2006; Excoffier

and Foll 2011; Shlyakhter et al. 2014), or an Application

Programming Interface (API) to allow models to be defined pro-

grammatically (e.g. Thornton 2014; Hernandez and Uricchio

2015; Kelleher et al. 2016; Becheler et al. 2019; Haller and Messer
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2019; Thornton 2019; Baumdicker et al. 2022). Command line
interfaces are a concise way of expressing demographic models,

and the syntax defined by ms (Hudson 2002) is used by several
simulators (e.g. Chen et al. 2009; Ewing and Hermisson 2010;
Staab et al. 2015). However, this conciseness means that models

of even intermediate complexity are difficult for humans to un-
derstand, making errors likely. APIs are more verbose, but require

a substantial time investment to learn, and as they are tied to a
specific tool this knowledge is not portable to other simulators.

Like APIs, input parameter file formats for simulators allow the
model specification to be less terse and allow for documentation
in the form of comments. Several graphical user interfaces and

visualization methods have been developed, which greatly facili-
tate interpretation (Mailund et al. 2005; Antao et al. 2007; Parreira

et al. 2009; Ewing and Hermisson 2010; Parobek et al. 2017; Zhou
et al. 2018). However, these methods currently have little traction

as they are all either directly coupled to an internal simulation
method or to the syntax of a specific simulator. There is currently

no way in which demographic models inferred by different pack-
ages can be simulated or visualized by downstream software.

Here, we present “Demes,” a data model and file format speci-
fication for complex demographic models developed by the

PopSim Consortium (Adrion et al. 2020). The Demes data model
precisely defines the sizes and relationships of populations, and

it provides a way to explicitly encode the information relevant to
demography while avoiding repetition. This data model is imple-

mented in the widely used YAML format (Ben-Kiki et al. 2009),
which is a data serialization language that provides a good bal-
ance between human and machine readability. The specification

precisely defines the required behavior of implementations, en-
suring that there is no ambiguity of interpretation, and includes

both a reference implementation and an extensive suite of test
examples and their expected output. The initial software ecosys-

tem includes high-quality Python and C parser implementations,
as well as utilities for verification and visualization of Demes

models, and has been implemented in several popular inference
and simulation methods (Table 1). We hope that this data model
and file format will be widely adopted by the community, such

that users can expect to simulate directly from inferred models
with little to no programming effort.

Demes
The design of Demes is a balance between two partially compet-
ing requirements: that (a) models should be easy for humans to
understand and manipulate; and (b) software processing Demes
models should be provided with an unambiguous representation
that is straightforward to process. For efficiency of understanding
and avoidance of model specification error, we require a data rep-
resentation without redundancy (i.e. repetition of values).
However, for the simplicity of software working with the Demes
model (and the avoidance of programming error, or divergence in
interpretations of the specification), it is preferable to have an ex-
plicit representation, in which all relevant values are readily
available. Thus, Demes are composed of three entities: the
Human Data Model (HDM) designed for human readability; the
Machine Data Model (MDM) designed for programmatic input
and processing; and the parser, which is responsible for trans-
forming the former into the latter.

Here, we provide a brief overview of the population genetics
models that Demes supports and the components of the Demes
infrastructure. Complete technical details of the MDM and
HDM, and the responsibilities of the parser are provided in the
online Demes specification (https://popsim-consortium.github.
io/demes-spec-docs/; accessed 2022 September 12). This specifi-
cation rigorously defines the data model, fully describing the en-
tities and their relationships, and the required behavior of
implementations. Since the online specification is definitive, we
will not recapitulate the details here, but instead focus on the
high-level properties of the model and the rationale behind key
design decisions.

Population genetics model
For inference and simulation software to meaningfully interoper-
ate, there must be a shared understanding of what a demo-
graphic model is. Population genetics is a large field, and rather
than attempting to capture all possible within- and between-

Table 1. Software support for Demes.

Software infrastructure

demes-python A Python library for loading, saving, and working with Demes models. Includes support for converting to and from
ms (Hudson 2002; https://github.com/popsim-consortium/demes-python).

demes-c A C library for parsing Demes YAML descriptions (https://github.com/grahamgower/demes-c).
demes-rust A Demes parser in Rust (https://github.com/molpopgen/demes-rs).
demes-julia A parser in Julia (https://github.com/apragsdale/Demes.jl).
demesdraw A Python library for visualizing Demes models (https://github.com/grahamgower/demesdraw).

Methods using Demes as input/output format
dadi Optimizes parameters in models of demographic history and distributions of fitness effects using SFS (Gutenkunst

et al. 2009). Can simulate SFS from Demes models.
demes-slim Loads Demes models into the SLiM forward simulator (Haller and Messer 2019).
fwdpy11 Simulates the Wright–Fisher model forward in time (Thornton 2014, 2019). Demes are the preferred format for

specifying a demographic model.
GADMA Infers models of demographic history (Noskova et al. 2020). Outputs Demes models and visualizations.
gIMble Fits IM-type demographic models and infers genomic barriers to geneflow (Laetsch et al. 2022). Outputs inferred

models in Demes format.
moments Optimizes parameters in models of demographic history using SFS and linkage disequilibrium statistics (Jouganous

et al. 2017; Ragsdale and Gravel 2019). Models to be optimized can be specified in Demes.
MSMC A script provided in the MSMC-tools repository (https://github.com/stschiff/msmc-tools) converts MSMC (Schiffels

and Durbin 2014; Schiffels and Wang 2020) output to the demes format.
msprime Simulates population genetic models using tree sequences (Kelleher et al. 2016; Kelleher and

Lohse 2020; Baumdicker et al. 2022). Demographic history models can be specified using Demes.

We have included software infrastructure developed for working with Demes models (such as parsing, validation, and visualization) as well as downstream
software that implement the specification, at the time of writing.
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population processes, we have instead adopted a pragmatic ap-
proach of identifying a common set of assumptions shared by
many methods. We outline the processes and assumptions
briefly here and in the Appendix.

Demographic models consist of one or more populations (or
“demes”) defined by their size histories and the time intervals of
their existence. Individuals can move between populations based
on their ancestor-descendant relationships or by continuous or
discrete migration events. Within a population, we assume
Wright–Fisher dynamics (see the Appendix for more precise
details). As described in the Scope of the Specification section be-
low, the demographic model does not, as a deliberate simplifica-
tion and separation of duties, include any information about
genome biology or selection.

These basic assumptions of discrete Wright–Fisher popula-
tions connected by instantaneous or continuous migrations are
shared by many inference methods (e.g. Gutenkunst et al. 2009;
Li and Durbin 2011; Gravel 2012; Schiffels and Durbin 2014;
Jouganous et al. 2017; Kamm et al. 2017; Ragsdale and Gravel
2019; Excoffier et al. 2021), and forwards- and backwards-time
simulators (e.g. Hudson 2002; Gutenkunst et al. 2009; Excoffier
and Foll 2011; Kelleher et al. 2016; Jouganous et al. 2017; Haller
and Messer 2019; Thornton 2019). Demes therefore serves as
“middleware” between inference methods and simulation soft-
ware, capturing these common assumptions.

It is important to note that the goal of describing the basic
population processes precisely is not to be proscriptive about
what methods may or may not use the specification, but so that
we can be clear on what situations we can expect methods to
agree exactly. Arbitrary population processes—for example,
within-deme continuous spatial structure (Wright 1943; Barton
et al. 2002, 2010; Ringbauer et al. 2017; Battey et al. 2020)—may be
layered on top of this basic description, but as dynamics diverge
from the core assumptions, then of course we can expect results
to differ accordingly.

Human data model
The Demes HDM is focused on efficient human understanding
and avoiding errors. We have adopted the widely used YAML for-
mat (Ben-Kiki et al. 2009) as the primary interface for writing and
interchanging demographic models (see the Appendix for ratio-
nale). Demographic models provide information about global fea-
tures of the model (such as time units and generation times),
populations (as “demes”) and their existence intervals (as
“epochs”), and gene flow between populations (as continuous
“migrations” or instantaneous “pulse” events). Figure 1 shows an
example isolation-with-migration model in HDM format.

Structurally, the HDM encourages human understanding by
avoiding redundancy in the description where possible and by
providing a mechanism for specifying default values that are
inherited hierarchically. For values that repeat across fields, the
“defaults” mechanism may be used to implicitly assign default
values to fields of the given type. A default is superseded by an
explicitly provided value if given. Size values are inherited natu-
rally following the progression of time. For example, if an epoch
start_size is not provided (either directly, or via a defaults sec-
tion), it is assumed to be equal to the end_size of the previous
epoch. This also means that the first epoch of each population
must specify the initial size (or it must be provided in a defaults
section).

Avoiding redundancy in this way reduces the cognitive load
on readers, by highlighting necessary parameters which may be
otherwise be obscured. It is not necessary—or indeed

recommended—that all models are expressed in a maximally

concise form, and we wholeheartedly endorse the explicit state-

ment of parameters where it increases model legibility.

Parsers
While the HDM is designed for human readability and concise-

ness, the underlying data model suitable for software implemen-

tation (the MDM) is redundant and exhaustive. Translation from

the HDM to the MDM requires resolving hierarchically defined

default values and verifying relationships between populations

and the validity of specified parameter values. Because this

translation and validation require significant programming ef-

fort, we define a standard software entity as part of the specifica-

tion to perform this task (the parser), which is intended to be

shared by programs that support Demes as input. The Demes

specification precisely defines the required behavior of parsers,

(a)

(b)

Fig. 1. Example isolation-with-migration Demes model. a) The HDM
representation expressed as YAML. b) A visual representation of the
model using demesdraw. The same model in the MDM form is provided
in Fig. A1.
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and we provide a reference implementation written in Python to
resolve any potential ambiguities, as well as an extensive test
suite of examples and the expected outputs. In addition, we have
high-quality parser implementations in the Python, C, Rust, and
Julia languages (Table 1) providing a solid foundation for the soft-
ware ecosystem. By maintaining high-quality Demes parsers
available as libraries, we ensure consistency across simulation
and inference software. Having common parsers also benefits
users by providing consistent and informative error messages for
missing values or issues in formatting.

Scope of the specification
A primary design goal of Demes is to provide a means of unam-
biguously communicating the results of demographic model
inferences to population genetic simulators. Since demography is
defined in terms of groups of individuals and these groupings are
influenced by genetics, it is difficult to find a simple definition
that separates the two. Thus, we have attempted to be pragmatic,
limiting the features that we include in Demes to those that are
in practise regarded as part of a demographic model.

The model is therefore limited to features that we can expect
many different demographic inference and simulation methods
to share. The specification only describes demographic features
at the population level. Features of genome biology are out of
scope, including mutation and recombination rates, genome
annotations, ploidy, and so on. Selection and dominance models
are absent, as discussed in the Appendix. It is important to note,
however, that Demes may be used in applications that include
additional population genetic processes outside of what is explic-
itly modeled in the specification, such as interpreting population
sizes as carrying capacities, implementations of hard selection,
or layering more complicated mating or spatial structure. The
Demes specification is intended to provide a basic model that can
be elaborated on where necessary.

Demes are not a standard population genetic simulation specifi-
cation, although it could be part of one. Since the standard is based
on JSON, and JSON documents can be arbitrarily nested, we can
imagine a simple specification of genome features such as muta-
tion and recombination rates in which the demography is defined
by an embedded Demes specification. Features of the simulation
specification (such as defining the time and location of samples)
can then refer to the Demes model. This design, in which we embed
the demographic model within a larger specification rather than
adding arbitrary and unrelated complexities to the demography is
an essential simplification and separation of duties.

The Demes specification is static by design—we wish to unam-
biguously describe a demographic model with a concrete set of
parameters. This simplicity means that we cannot directly spec-
ify parameter distributions or estimated confidence intervals for
those parameters. While it is not difficult to imagine extending
the specification in ways that would allow this, it is not clear that
the benefits are worth the greatly increased parser complexity
(see the Appendix).

Example: an isolation-with-migration model
In Fig. 1, we provide an example isolation-with-migration model.
Models typically start with a concise description, followed by the
mandatory time_units field. This model uses the defaults sec-
tion to provide a default start_size of 1,000 individuals for each
epoch of each deme. There are 3 demes in the model, an ancestral
deme named “A” which exists arbitrarily far back into the past
then ceases to exist at 100 generations ago, and demes “X” and “Y”

that derive their ancestry from A when it goes extinct. Demes A
and X have only one epoch, in which the population sizes are con-
stant, whereas deme Y has 2 epochs. Deme Y’s second epoch has a
different end_size than its start_size, which indicates the size
grows exponentially from 1,000 individuals at 50 generations ago
to 3,000 individuals at time 0 (the present). The migration section
lists one migration stanza, between demes X and Y. This migration
stanza does not indicate a source or destination deme, so the mi-
gration is symmetric. No migration times are specified, so migra-
tions occur continuously at the given rate during the time interval
over which both demes exist (from 100 generations ago until the
present). We do not attempt a detailed explanation of all Demes
features here, and readers are instead directed to the tutorial and
detailed specification in the online documentation (https://pop
sim-consortium.github.io/demes-spec-docs/; accessed 2022
September 12).

Application: simulation using Demes
Here, we highlight the interaction between Demes and other soft-
ware, including simulation and model illustration tools. Demes
allow us to specify a demographic model which can be used as
the input for a growing number of simulation packages (Table 1).
We implemented the human two-population demographic model
from Tennessen et al. (2012) inferred from European and African-
American sequencing data. This model (shown in Demes format
in Fig. A2) is parameterized by an ancestral population with an
ancient growth, divergence into “AFR” and “EUR” that each has
multiple-epoch size histories, and multiple epochs of continuous
migration between the two branches (illustrated using demes-

draw in Fig. 2a). The large final sizes (�500; 000 individuals each)
are one to three orders of magnitude larger than ancestral popu-
lation sizes, reflecting the recent explosive population size in-
crease in humans.

We used this model to simulate 20 haploid genome copies
from EUR and AFR at time zero (i.e. present day) to obtain the
joint site-frequency spectrum (SFS), a summary of observed allele
frequencies widely used in evolutionary inference (Bustamante
et al. 2001; Gutenkunst et al. 2009; Tennessen et al. 2012;
Jouganous et al. 2017; Kamm et al. 2017; Kim et al. 2017). The
Demes model (Figs. 2a and A2) was provided as the input demog-
raphy to msprime (Baumdicker et al. 2022) to simulate a large
recombining region under the mutation rate assumed in
Tennessen et al. (2012), and we computed the observed SFS using
tskit (Ralph et al. 2020). Using the same Demes model as input
to moments (Jouganous et al. 2017), we computed the expectation
of the joint SFS and compared to the msprime simulated data
(Fig. 2, b and c). Figure 2d shows the code required to run the sim-
ulations in msprime and moments, and demonstrates that pre-
cisely the same input model, without modification, was provided
to both packages. Such interoperability is a major gain for
researchers, which we hope will become the expected norm as
more packages adopt the Demes format.

Discussion
Stable and healthy software ecosystems require standard inter-
change formats, allowing for the development of high-quality
and long-lasting tools that produce and consume the standard.
Demographic models are a key part of population genetics re-
search, and to date, the transfer of inferred models to down-
stream simulations has been ad hoc, and conversions between
the many different ways of expressing such models are both
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labor intensive and error-prone. The proposed Demes standard is

an attempt to bridge this gap between inference and simulation,

and also to provide the foundations for a sustainable ecosystem

of tools built around this data model. Table 1 shows some initial

infrastructure that we have built as part of developing Demes,

but many other useful tools can be envisaged that produce, con-

sume, or transform this format.
Reproducibility is a significant problem throughout the scien-

ces (Baker 2016), and various measures have been proposed to in-

crease the likelihood of researchers being able to replicate results

in the literature (Munafò et al. 2017). The most basic requirement

for reproducibility is that we must be able to state precisely what

the result in question is. The lack of standardization in how com-

plex demographic models are communicated today, and the lack

of precision in the published model descriptions means that it is

difficult to replicate analyses, or reproduce those models for later

simulation. Thus, we hope that the Demes standard introduced

here will be widely adopted by simulation and inference methods

and be used for reporting results in publications, either as supple-

mental material or uploaded to a data repository.

Data availability
The Demes specification and documentation are available at

https://popsim-consortium.github.io/demes-spec-docs/

Acknowledgments
The authors would like to thank the editor and reviewers for

helpful comments that have significantly improved this manu-

script.

Funding
GG was supported by a Villum Fonden Young Investigator award

to Fernando Racimo (project no. 00025300). RG and TS were sup-

ported by the National Institute of General Medical Sciences of

the National Institutes of Health (R01GM127348 to RNG). MH was

supported by a Natural Environment Research Council

Independent Research Fellowship (NE/R015686/1). JK was sup-

ported by the Robertson Foundation. SS was supported by fund-

ing from the European Research Council under the European

Union’s Horizon 2020 research and innovation program (grant

agreement No 851511). GB was supported by funding from the

European Research Council (ModelGenomLand, 757648).

Conflicts of interest
None declared.

Literature cited
Adrion JR, Cole CB, Dukler N, Galloway JG, Gladstein AL, Gower G,

Kyriazis CC, Ragsdale AP, Tsambos G, Baumdicker F, et al. A

community-maintained standard library of population genetic

models. eLife. 2020;9:e54967.

Antao T, Beja-Pereira A, Luikart G. MODELER4SIMCOAL2: a user-

friendly, extensible modeler of demography and linked loci for

coalescent simulations. Bioinformatics. 2007;23(14):1848–1850.

Arenas M. Simulation of molecular data under diverse evolutionary

scenarios. PLoS Comput Biol. 2012;8(5):e1002495.

Baker M. 1,500 scientists lift the lid on reproducibility. Nat News.

2016;533(7604):452–454.

Barton NH, Depaulis F, Etheridge AM. Neutral evolution in spatially

continuous populations. Theor Popul Biol. 2002;61(1):31–48.

(a) (b)

(d)

(c)

Fig. 2. Illustration and simulation using Demes. a) Using an inferred demographic model from Tennessen et al. (2012) specified as a YAML file in Demes
format (Fig. A2), we used demesdraw to visualize the demographic model (note the recent exponential growth resulting in present-day population sizes
that greatly exceed those in the past). We then used msprime to simulate genomic data for 20 genome copies sampled from the two contemporary
populations, and we used moments to compute the expected joint site-frequency spectrum for the same sample sizes (Fig. A3). b, c) We compared the
single-population SFS in each population, showing agreement between the simulation methods. d) Python code snippets of the interactions between
demes and the simulation software. An extended script to compute the SFS shown in (b) and (c) is given in Fig. A3.

G. Gower et al. | 5

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/222/3/iyac131/6730747 by guest on 15 N

ovem
ber 2022

https://popsim-consortium.github.io/demes-spec-docs/


Barton NH, Kelleher J, Etheridge AM. A new model for extinction and

recolonization in two dimensions: quantifying phylogeography.

Evolution. 2010;64(9):2701–2715.

Battey C, Ralph PL, Kern AD. Space is the place: effects of continuous

spatial structure on analysis of population genetic data.

Genetics. 2020;215(1):193–214.

Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP,

Tsambos G, Zhu S, Eldon B, Ellerman EC, Galloway JG, et al.

Efficient ancestry and mutation simulation with msprime 1.0.

Genetics. 2022;220(3):iyab229.

Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian compu-

tation in population genetics. Genetics. 2002;162(4):2025–2035.

Becheler A, Coron C, Dupas S. The quetzal coalescence template li-

brary: a Cþþ programmers resource for integrating distribu-

tional, demographic and coalescent models. Mol Ecol Resour.

2019;19(3):788–793.

Ben-Kiki O, Evans C, Ingerson B. YAML Ain’t Markup Language

(yamlTM) version 1.1. Working Draft 2008-0511. 2009. https://

yaml.org/spec/1.2.2/

Bray T. The JavaScript Object Notation (JSON) Data Interchange

Format. RFC 8259. 2017. https://www.rfc-editor.org/rfc/rfc8259

Bürger R. The Mathematical Theory of Selection, Recombination,

and Mutation. Chichester (UK): Wiley; 2000.

Bustamante CD, Wakeley J, Sawyer S, Hartl DL. Directional selection

and the site-frequency spectrum. Genetics. 2001;159(4):

1779–1788.

Carvajal-Rodr�ıguez A. Simulation of genomes: a review. Curr

Genomics. 2008;9(3):155–159.

Chen GK, Marjoram P, Wall JD. Fast and flexible simulation of DNA

sequence data. Genome Res. 2009;19(1):136–142.

Christiansen FB. Hard and soft selection in a subdivided population.

Am Nat. 1975;109(965):11–16.

Crow JF, Kimura M. An Introduction to Population Genetics Theory.

Caldwell NJ: Blackburn press; 1970.

Ewing G, Hermisson J. MSMS: a coalescent simulation program in-

cluding recombination, demographic structure, and selection at

a single locus. Bioinformatics. 2010;26(16):2064–2065.

Excoffier L, Foll M. Fastsimcoal: a continuous-time coalescent simu-

lator of genomic diversity under arbitrarily complex evolutionary

scenarios. Bioinformatics. 2011;27(9):1332–1334.

Excoffier L, Marchi N, Marques DA, Matthey-Doret R, Gouy A, Sousa

VC. fastsimcoal2: demographic inference under complex evolu-

tionary scenarios. Bioinformatics. 2021;37(24):4882–4885.

Gilmour JSL, Gregor JW. Demes: a suggested new terminology.

Nature. 1939;144(3642):333.

Gilmour JSL, Heslop-Harrison J. The deme terminology and the units

of micro-evolutionary change. Genetica. 1954;27(1–2):147–161.

Gravel S. Population genetics models of local ancestry. Genetics.

2012;191(2):607–619.

Guillaume F, Rougemont J. Nemo: an evolutionary and population

genetics programming framework. Bioinformatics. 2006;22(20):

2556–2557.

Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD.

Inferring the joint demographic history of multiple populations

from multidimensional SNP frequency data. PLoS Genetics. 2009;

5(10):e1000695.

Haller BC, Messer PW. SLiM 3: forward genetic simulations beyond

the Wright–Fisher model. Mol Biol Evol. 2019;36(3):632–637.

Hartfield M, Wright SI, Agrawal AF. Coalescent times and patterns of

genetic diversity in species with facultative sex: effects of gene

conversion, population structure, and heterogeneity. Genetics.

2016;202(1):297–312.

Hernandez RD. A flexible forward simulator for populations subject

to selection and demography. Bioinformatics. 2008;24(23):

2786–2787.

Hernandez RD, Uricchio LH. SFS_code: more Efficient and Flexible

Forward Simulations. Technical report, bioRxiv. 2015. https://doi.

org/10.1101/025064

Hoban S, Bertorelle G, Gaggiotti OE. Computer simulations: tools for

population and evolutionary genetics. Nat Rev Genet. 2012;13(2):

110–122.

Hudson RR. Testing the constant-rate neutral allele model with pro-

tein sequence data. Evolution. 1983;37(1):203–217.

Hudson RR. Generating samples under a Wright-Fisher neutral

model of genetic variation. Bioinformatics. 2002;18(2):337–338.

Jouganous J, Long W, Ragsdale AP, Gravel S. Inferring the joint demo-

graphic history of multiple populations: beyond the diffusion ap-

proximation. Genetics. 2017;206(3):1549–1567.

Kamm JA, Terhorst J, Song YS. Efficient computation of the joint

sample frequency spectra for multiple populations. J Comput

Graph Stat. 2017;26(1):182–194.

Kelleher J, Etheridge AM, McVean G. Efficient coalescent simulation

and genealogical analysis for large sample sizes. PLoS Comput

Biol. 2016;12(5):e1004842.

Kelleher J, Lohse K. Coalescent simulation with msprime. In: JY

Dutheil, editor. Statistical Population Genomics. New York (NY):

Springer US; 2020. p. 191–230.

Kern AD, Schrider DR. Discoal: flexible coalescent simulations with

selection. Bioinformatics. 2016;32(24):3839–3841.

Kim BY, Huber CD, Lohmueller KE. Inference of the distribution of

selection coefficients for new nonsynonymous mutations using

large samples. Genetics. 2017;206(1):345–361.

Laetsch D. R, Bisschop G, Martin S, Aeschbacher S, Setter D, Lohse K.

Demographically explicit scans for barriers to gene flow using

genome-wide IM blockwise likelihood estimation: gIMble. In

prep. 2022.

Li H, Durbin R. Inference of human population history from individ-

ual whole-genome sequences. Nature. 2011;475(7357):493–496.

Liu Y, Athanasiadis G, Weale ME. A survey of genetic simulation soft-

ware for population and epidemiological studies. Hum

Genomics. 2008;3(1):79–86.

Mailund T, Schierup MH, Pedersen CNS, Mechlenborg PJM, Madsen

JN, Schauser L. CoaSim: a flexible environment for simulating ge-

netic data under coalescent models. BMC Bioinformatics. 2005;6:

252–256.
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Appendix
The Demes specification is a formal data model for describing the
properties of populations over time, along with some metadata
and provenance information. The data model is based on the
ubiquitous JSON (Bray 2017) standard, and formally defined using
JSON Schema (Wright et al. 2020). Along with the schema, full
technical details of the model are provided in the online specifi-
cation document (https://popsim-consortium.github.io/demes-
spec-docs/).

Population genetics model details
In Demes, demographic models consist of one or more interact-
ing populations, or “demes,” understood to be a collection of indi-
viduals that can be conveniently modeled using a defined set of
rules and parameters (Gilmour and Gregor 1939; Gilmour and
Heslop-Harrison 1954). To avoid confusion with the name of the
specification itself, we will use the term “population” in this dis-
cussion, with the understanding that the terms are interchange-
able. A population is defined as some collection of individuals
that exists for some period of time, and has a well-defined size
(i.e. number of individuals) during that time period. Individuals
can move between populations either according to their ances-
tor–descendant relationships or through processes involving
migrations. Few other properties of the populations are specified
in the model: we are concerned primarily with defining the popu-
lations, their sizes, and the movement of individuals between
those populations.

Time units
Population and event times are written as units in the past, so
that time zero corresponds to the final generation or “now,” and
event times in the past are values greater than zero with larger
values corresponding to times in the more distant past. By having
time values increase into the past, we avoid the need to choose

an arbitrary point in history as “time zero.” A natural specifica-
tion for time units is in generations, although other time units
are permitted, such as years, accompanied by the generation
time so that downstream software may convert times into gener-
ations as required.

There must be at least one population with an infinite
start_time. An infinite start time may be interpreted differently
depending on the simulator. In a coalescent setting, there is no up-
per bound for the coalescent time of lineages in this population. In
a forwards-time setting, the interval of time between infinity and
the oldest noninfinite model time (i.e. the “first event”) is approxi-
mated by the simulator’s burn-in phase—detailed guidance is pro-
vided in the online specification.

Sizes and epochs
Population sizes are given as numbers of individuals, and details
such as ploidy levels are considered external to the model. We
therefore focus on the number of individuals as opposed to the
number of genome copies. Sizes and mating system details are
specified for each population within population-specific epochs.
Epochs are contiguous time intervals that define the existence in-
terval of the population. Each epoch specifies the population size
over that interval, which can be a constant value or a function
defined by start and end sizes that must remain positive. Only ex-
ponential population size changes are currently supported, but
other functions may be added to the specification over time.

Population dynamics
Within a population, we assume that allele frequency dynamics
can be described by the Wright–Fisher model. Briefly, generations
are nonoverlapping (all parents reproduce and die simulta-
neously), and for allele i currently at frequency pi, its frequency
in the next generation (at birth) is expected to be piwi=w, where
wi and w are the marginal and mean fitnesses, respectively, prop-
erly weighted according to ancestry proportions. In this frame-
work, a forward-time simulation of finite populations is
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equivalent to multinomial sampling of allele frequencies each

generation (Bürger 2000, pp. 29–31; Crow and Kimura 1970, pp.

179–181), and a backwards-time (coalescent) simulation follows

the approximations described in Tajima (1983), Hudson (1983),

and Wakeley (2008, Chapter 3). Furthermore, this model assumes

“soft” selection (Christiansen 1975), meaning that the dynamics

of population sizes changes are independent of the details of indi-

vidual fitnesses. As such, this model excludes scenarios such as

“hard selection,” in which population sizes are dependent on a

population’s mean fitness, or stochastic fluctuations in popula-

tion size, such as interpreting population sizes as carrying capaci-

ties. Many forwards and backwards time simulators currently

implement this model (e.g. Hudson 2002; Gutenkunst et al. 2009;

Excoffier and Foll 2011; Kelleher et al. 2016; Jouganous et al. 2017;

Haller and Messer 2019; Thornton 2019).

Selfing and cloning
Each population has an assigned selfing rate and cloning rate,

where each defines the probability that offspring are generated

from one generation to the next by either self-fertilization or

cloning of an individual. More specifically, for a given epoch
within a population denote the clonal rate by r and the selfing
rate by S. S and r can take any value between zero and one and
can sum to more than one. Each generation a proportion of off-
spring r are expected to be generated through clonal reproduc-
tion, while 1� r are expected to arise through sexual
reproduction. Within the sexually reproduced offspring, a propor-
tion S is born via self-fertilization while the rest have parents
drawn at random from the previous generation. Depending on
the simulator, this random drawing of parent may occur either
with or without replacement. When drawing occurs with replace-
ment, a small amount of “residual” selfing is expected, so that
the realized selfing probability is ð1� rÞðSþ ð1� SÞ=NÞ instead of
ð1� rÞS (so that even with r¼ 0 and S¼ 0, selfing may still occur
with probability 1=N), although this effect is negligible in large
populations (Nordborg and Donnelly 1997).

By allowing the definition of selfing and cloning probabilities,
we allow many standard models to be defined. However, by pa-
rameterizing selfing and cloning as we have, we assume that
these properties of populations can be specified independently
from the genetics. In other words, mutations that cause selfing
probabilities to fluctuate within an epoch are not considered.
More details of the mathematical properties of selfing and clon-
ing rates in a coalescent context can be found in Nordborg and
Donnelly (1997) and Hartfield et al. (2016).

Relationships between populations
A population may have one or more ancestors, which are other
populations that exist at the population’s start time. If one ances-
tor is specified, the first generation is constructed by randomly

Fig. A2. The Tennessen et al. (2012) two-population demographic model
in Demes format. This model includes a single ancestral population that
expands in size in the past, followed by divergence between AFR- and
EUR-labeled populations. The two-population phase of the model
includes multiple epochs of varying size, and rapid exponential growth
over the past 5,000 years in each population.

Fig. A1. Isolation-with-migration example model from Fig. 1 in MDM
form. The MDM form of the model is complete and explicit, but contains
much redundant information that is omitted in the HDM form.
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sampling parents from the ancestral population to contribute to
offspring in the newly generated population. If more than one an-
cestor is specified, the proportions of ancestry from each contrib-
uting population must be provided, and those proportions must
sum to one. In this case, parents are chosen randomly from each
ancestral population with probability given by those proportions.

Individuals in a population may have parents from a different
population through migrations. These can be defined as continu-
ous migration rates over time intervals for which populations co-
exist or through instantaneous (or pulse) migration events at a
given time. Continuous migration rates are defined as the proba-
bility that parents in the “destination” population are chosen
from the “source” population. On the other hand, pulse migration
events specify the instantaneous replacement of a given fraction
of individuals in a destination population by individuals with
parents from a source population.

Rationale for YAML
We have adopted the widely used YAML format (Ben-Kiki et al.
2009) as the recommended means of interchanging Demes mod-
els (e.g. Figs. 1 and A2). YAML is a data serialization language

with an emphasis on simplicity and which interoperates well
with JSON (indeed, YAML 1.2 is a superset of JSON). We chose
YAML over JSON because although JSON is an excellent format
for data interchange, it is ill-suited for human understanding and
manipulation. We also considered other declarative data ex-
change formats such as TOML, but chose YAML because of its
equivalence with JSON, popularity, and good software support.
Since the Demes data model is defined in JSON Schema, however,
there is no formal dependency on YAML and implementations
may choose to use JSON directly if they wish (e.g. for greater effi-
ciency).

Rationale for static models
The Demes specification is designed to describe demographic
models defined by a fixed set of model parameters. As described
in the main text, it does not include information about estimated
confidence intervals or the joint distribution of parameter values.
In this section, we describe the rationale for this design decision.

The parameters of demographic models are typically tightly
coupled, and cases in which distributions for different parame-
ters can be simply described are rare. In this situation, the sim-
plest way to describe an estimated distribution is to list a large
number of samples from the posterior. While writing out a large
number of Demes models in YAML format may seem inefficient,
it can in fact be a compact way to describe these distributions.
For example, consider a one-population model with piecewise-
constant sizes over 20 epochs which has �40 free parameters:
the start_size and end_time values for each epoch. If we sam-
ple 50,000 models from the posterior distribution, the resulting
multidocument YAML file is 45 MiB. This format compresses
down to 8.4 MiB when gzipped or 6.2 MiB when compressed with
LZMA2, which is on par with an equivalent binary representation
of the free parameters (40� 50000� 4 bytes � 7:6 MiB).

Similarly, one might be interested in running simulations in
which the demographic model parameters are drawn from a dis-
tribution, e.g. in ABC inference (Beaumont et al. 2002). Other infer-
ence procedures based on optimizing a loss function (Gutenkunst
et al. 2009; Jouganous et al. 2017; Kamm et al. 2017; Ragsdale and
Gravel 2019; Excoffier et al. 2021) need users to specify parameter
bounds, and possibly nonlinear or conditional constraints be-
tween parameters. Indeed, the choice of how to parameterize a
model could be important for some inference methods (e.g. abso-
lute times vs relative times between events).

Implementing the many distributions of interest and support-
ing a general way to describe a model’s free parameters would
greatly increase the complexity of parsers, with relatively limited
benefit to most users. It is unlikely that Demes could be made
sufficiently flexible without implementing many features of
general-purpose programming languages, such as variables, ar-
ithmetic, and flow control. Such use cases are therefore better
served by writing model-generating functions in an existing pro-
gramming language, for example using the Demes Python API
(e.g. as implemented in moments; Jouganous et al. 2017; Ragsdale
and Gravel 2019). As an intriguing possibility for developments in
this direction, there exist many templating solutions for YAML
and JSON that are specifically designed for extending static data
in arbitrarily complex ways (e.g. YTT, Jsonnet, CUE, and Dhall).

Fig. A3. Simulation of SFS for the Tennessen model. We first load the
demographic model using demes (as graph), which can then be used
by msprime to create the demographic model used in msprime.

sim_ancestry(). The same loaded graph can also be passed to moments

to compute the expected joint SFS. To compare the SFS in Fig. 2, we
marginalize the joint SFS to obtain the single-population SFS for both
AFR and EUR populations. Lines interfacing demes and other software
are highlighted.
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