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Abstract
Background: Lymphatic malformations (LMs) often pose treatment challenges due to a large size 
or a critical location that could lead to disfigurement, and there are no standardized treatment 
approaches for either refractory or unresectable cases.
Methods: We examined the genomic landscape of a patient cohort of LMs (n = 30 cases) that 
underwent comprehensive genomic profiling using a large-panel next-generation sequencing assay. 
Immunohistochemical analyses were completed in parallel.
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Results: These LMs had low mutational burden with hotspot PIK3CA mutations (n = 20) and NRAS 
(n = 5) mutations being most frequent, and mutually exclusive. All LM cases with Kaposi sarcoma-
like (kaposiform) histology had NRAS mutations. One index patient presented with subacute 
abdominal pain and was diagnosed with a large retroperitoneal LM harboring a somatic PIK3CA 
gain-of-function mutation (H1047R). The patient achieved a rapid and durable radiologic complete 
response, as defined in RECIST1.1, to the PI3Kα inhibitor alpelisib within the context of a personal-
ized N-of-1 clinical trial (NCT03941782). In translational correlative studies, canonical PI3Kα pathway 
activation was confirmed by immunohistochemistry and human LM-derived lymphatic endothelial 
cells carrying an allele with an activating mutation at the same locus were sensitive to alpelisib treat-
ment in vitro, which was demonstrated by a concentration-dependent drop in measurable imped-
ance, an assessment of cell status.
Conclusions: Our findings establish that LM patients with conventional or kaposiform histology have 
distinct, yet targetable, driver mutations.
Funding: R.P. and W.A. are supported by awards from the Levy-Longenbaugh Fund. S.G. is 
supported by awards from the Hugs for Brady Foundation. This work has been funded in part by 
the NCI Cancer Center Support Grants (CCSG; P30) to the University of Arizona Cancer Center 
(CA023074), the University of New Mexico Comprehensive Cancer Center (CA118100), and the 
Rutgers Cancer Institute of New Jersey (CA072720). B.K.M. was supported by National Science 
Foundation via Graduate Research Fellowship DGE-1143953.
Clinical trial number: 
 NCT03941782

Editor's evaluation
The study examines the genomic landscape of a patient cohort of lymphatic malformations (LMs) 
through next-generation sequencing and immunocytochemistry. The authors identified actionable 
driver mutations in the P13KCA and NRAS genes. The study enhances our understanding of the 
genetic architecture of the otherwise disfiguring LMs in people.

Introduction
Vascular anomalies, including lymphatic malformations (LMs), are usually diagnosed in children or 
young individuals and they can present as either isolated lesions or as part of somatic or congenital 
syndromes. Here, the term lymphatic malformation is used to include the clinicopathologic continuum 
of benign tumors of lymphatic origin (https://rarediseases.org/rare-diseases/lymphatic-malforma-
tions), including cystic lymphangioma, kaposiform lymphangiomatosis (KLM), and macro/microcystic 
LM. In general, LMs are managed by sclerotherapy, laser, or surgical interventions when there is an 
indication for therapy (Perkins et al., 2010). In certain cases, LMs can attain large sizes or involve 
critical locations, which poses treatment challenges such as the possibility of disfigurement. Genomic 
sequencing has demonstrated a somatic clonal origin for a number of nonmalignant growth condi-
tions including LMs. Activating PIK3CA mutations have been reported in most pediatric patients 
with isolated or syndromic LMs (Luks et al., 2015). This finding has led to the use of mammalian 
target of rapamycin (mTOR) inhibitors for systemic therapy of unresectable LMs, given that mTOR 
is a molecule downstream of the PI3K pathway (Fruman et  al., 2017). However, only a subset of 
patients responded, and the treatment can have substantial side effects. PI3K inhibitors have also 
been recently approved by the FDA for treatment of adults and children with severe manifestations 
PIK3CA-related Overgrowth Spectrum (termed PROS) who require systemic therapy, but the efficacy 
of alpelisib in isolated sporadic LMs is not at all clear. Activating NRAS mutations have been described 
in a subset of LM known as KLM (Barclay et al., 2019). KLM belong to a group of complex lymphatic 
anomalies that exhibit histologic and clinical features distinguishing them from classic LM. It is not as 
yet clear which oncogenic drivers, if any, are present in LMs with wild-type PIK3CA and NRAS alleles.

To define the spectrum of genomic alterations and lesions present in LMs, here we have analyzed 
a patient cohort of LMs (n = 30 cases) assayed by clinical-grade genomic sequencing. Pathogenic 
activating mutations in PIK3CA and NRAS were the most common genetic alterations found. Strik-
ingly, the PIK3CA and NRAS mutations were mutually exclusive with NRAS mutations being greatly 
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enriched in LMs with kaposiform morphology. We have also performed an N-of-1 trial of the PI3Kα 
inhibitor alpelisib in a young man with an activating PIK3CA point mutation, presenting with a giant 
(unresectable) retroperitoneal and pancreatic LM, who had a dramatic and prolonged response to the 
drug lasting years, and we present confirmatory translational correlates in vitro.

Materials and methods
Genomics and DNA sequencing
Hybrid-capture DNA sequencing targeting exons of at least 324 cancer genes and select introns of 
36 genes were performed on the patient samples; a subset (n = 2) were also analyzed with plus RNA 
sequencing of 265 genes to improve rearrangement detection. A total of 30 patient samples were 
sequenced with either the DNA-only assay (n = 28; Foundation One CDx, Foundation Medicine; 
Cambridge, MA) or the DNA + RNA assay (n = 2; Foundation One Heme, Foundation Medicine; 
Cambridge, MA).

Immunohistochemistry
Immunohistochemistry (IHC) was performed on formalin-fixed, deparaffinized, 5-µm-thick sections 
mounted on charged slides. Antibodies to P-AKT (Ser473) and P-6S (Ser240/Ser244) were obtained 
from Cell Signaling Technology, Danvers, MA. Diaminobenzidine was used as the chromogen and 
hematoxylin as the counterstain. All stages of staining were carried out on an automated system 
(Ventana Discovery Research Instrument; Ventana, Tucson, Arizona). Positive and negative controls 
were appropriately reactive. A surgical pathologist with subspecialty interest in musculoskeletal 
pathology (T.J.B.) interpreted the results.

Lymphatic malformation-lymphatic endothelial cell sensitivity to 
alpelisib in vitro
Lymphatic malformation-lymphatic endothelial cells (LM-LECs) were maintained as described 
(Boscolo et al., 2015) and negative for mycoplasma at the time of these studies. Mycoplasma test 
was performed using the MycoAlert Mycoplasma Detection Kit (Cat # LT07-218, Lonza) following 
the manufacturer’s instructions. Real-time analysis of cell viability was performed by using the xCEL-
Ligence system RTCA SP (ACEA Biosciences). Briefly, 5 × 103 LM-LECs per well were seeded in an 
E-Plate 96 (ACEA Biosciences) and cell proliferation was recorded hourly. When the cells reached the 
exponential growth phase, new media containing alpelisib at 1, 3, 10, 30, or 100 nM was added and 
alpelisib cytotoxic effect was recorded hourly. IC50 was calculated by using the dose–response curve 
function available in the xCELLigence software Version 2.0. Cell index (%) reflects cell viability.

Clonogenic survival assays
For the clonogenic survival assay, the LM-LECs were trypsinized, counted, and plated in complete 
growth media on 6-well plates (Falcon) (400 cells/well). Seven days later, alpelisib (at the empirically 
determined IC50 from a standard calibration curve) was added in duplicate wells. After 24 or 48 hr of 
incubation, cells were fixed and stained in 50% methanol in water containing 0.3% crystal violet to 
facilitate counting of colonies (≥50cells).

Statistics
All values are expressed as mean with error bars expressed as standard deviation. For comparison 
between untreated (negative), dimethyl sulfoxide control, and alpelisib-treated LM-LEC cells, the ordi-
nary one-way analysis of variance and Tukey’s multiple comparisons test with a single pooled variance 
were used. Statistical analysis was performed using the GraphPad Prism 7.0d software (GraphPad 
Software Inc, San Diego, CA). Fisher’s exact test was used for categorical data, owing to the sizes of 
the cohorts. A two-tailed p value of <0.05 was considered to be statistically significant.

Study approval
Approval for this study, including a waiver of informed consent and Health Insurance Portability and 
Accountability Act waiver of authorization, was obtained from the Western Institutional Review Board 
(IRB; protocol #20152817). A single-institution personalized clinical protocol to treat the patient with 
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the experimental PI3Kα inhibitor alpelisib was scientifically reviewed by the Protocol Review and 
Monitoring Committee (PRMC) and approved by the local Institutional Review Board (IRB) of the 
University of New Mexico Comprehensive Cancer Center. The study (NCT03941782) was conducted 
in accordance with the protocol, Good Clinical Practice guidelines, and the provisions of the Declara-
tion of Helsinki. CARE reporting guidelines were also used for this patient (Gagnier et al., 2013). The 
index patient signed an informed written consent form.

Results
Mutational landscape and histopathology of LMs
A set of 30 cases of LMs (from 30 individual patients) were assayed with genomic profiling at Founda-
tion Medicine, Inc (Cambridge, MA). Twenty-eight cases were sequenced using hybrid-capture next-
generation sequencing (NGS) targeting exons of 300 + cancer genes and select introns of 36 genes. 
Two other cases were sequenced using hybrid-capture based DNA sequencing targeting exons of 406 
+ cancer genes and select introns of 36 genes, plus RNA sequencing of 265 genes for rearrangement 
calling. The patients were predominantly pediatric age (median 9-year-old; range, 1- to 45-year-old), 
with a slight female predominance (17 females, 57%–13 males, 43%). Seven patients had a docu-
mented history of prior treatment with an mTOR inhibitor, such as sirolimus. Seven patients (23%) 
had documentation of clinical diagnoses of overgrowth syndromes including Congenital Lipomatous 
Overgrowth with Vascular, Epidermal, and Skeletal anomalies (termed CLOVES), Klippel–Trenaunay 
syndrome, and phosphatase and tensin homolog (PTEN)-like hamartoma syndrome at the time of 
testing. Twelve patients (40%) had multifocal disease and eight patients had involvement of bone and 
visceral sites (Table 1). Expert histopathological review showed that only four (13%) had kaposiform 
morphology, while 26 (87%) had conventional histology. The estimated histopathologic purity ranged 
from 10% to 70% (median 20%).

Mutational profiling showed that these LMs had uniformly low tumor mutational burden (median, 
zero mutations/Mb; range, 0–2.6 mutations/Mb), and none had evidence of microsatellite instability. 
The most common mutations were activating mutations in PIK3CA, seen in 20 (67%), and activating 
NRAS mutations, seen in 5 (17%) (Figure 1A, B). The PIK3CA mutations included hotspot mutations 
in both the helical domain and the kinase domain (Samuels et al., 2004). The NRAS mutations all 
altered the known hotspot at residue glutamine 61 (Q61) in the phosphorylation binding loop. Of the 
five patients (17%) with no alterations in PIK3CA and NRAS, one case (Patient #29; Table 1) had an 
activating GOPC–ROS1 fusion (Figure 1C) with a ROS1 missense point mutation. Similar GOPC–ROS1 
fusions have been reported in pediatric gliomas in the setting of microdeletion of chromosome 6q228, 
and have also been found in adult lung cancer (Drilon et al., 2021).

The variant allele frequencies (VAFs) of the PIK3CA and NRAS mutations were relatively low 
(median, 6%; range, 1–38%), compatible with relatively low histopathologic estimated percentage of 
tumor nuclei (%TN) to overall cellular nuclei (median, 20%; range, 10–70%). These results suggest that 
the PIK3CA and NRAS mutations were likely clonal, but in the setting of relatively low tumor purity in 
the specimens.

Enrichment of NRAS mutations in LMs with kaposiform features
Histopathological analysis of the lesions by an board-certified dermatopathologist (J.Y.T.) identified 
that four (13%) of the analyzed specimens had kaposiform histopathological features with highly 
cellular, clustered, or sheet-like, proliferation of spindled lymphatic cells admixed with dilated thin-
walled lymphatic vessels (Figure 1D). The remaining 26 lesions (87%) had conventional histopatholog-
ical features of classic LM, with proliferation of dilated, thin-walled lymphatic vessels with or without 
luminal proteinaceous material. Lymphatic phenotype of the cells was confirmed by immunopositivity 
for PROX1 or D2-40, by report. Of the conventional histology LM cases (n = 26), 20 (77%) had a 
PIK3CA mutation, while 1 (4%) had a NRAS mutation, and 5 (19%) were wild-type for both genes, 
including a single case with a GOPC–ROS1 genetic fusion. Notably, all four cases of LM with kaposi-
form features had an activating NRAS mutation, consistent with enrichment of NRAS mutation (p = 
0.00018) and lack of PIK3CA mutation in this histology (p = 0.0046). The lone NRAS-mutant LM with 
conventional histology was a small core needle-biopsy specimen of a large visceral tumor, raising the 
possibility that the histopathologic features of the sampled tissue may not have been representative 

https://doi.org/10.7554/eLife.74510


 Research article﻿﻿﻿﻿﻿﻿ Medicine

Shaheen, Tse et al. eLife 2022;11:e74510. DOI: https://doi.org/10.7554/eLife.74510 � 5 of 17

Ta
b

le
 1

. C
lin

ic
al

 a
nd

 h
is

to
lo

g
ic

al
 f

ea
tu

re
s 

o
f 

ly
m

p
ha

ti
c 

m
al

fo
rm

at
io

n 
co

ho
rt

.

P
at

ie
nt

A
g

e
(y

ea
rs

)
Se

x
Su

b
m

it
te

d
 c

lin
ic

al
 s

yn
d

ro
m

e
Lo

ca
liz

ed
 v

s.
 m

ul
ti

fo
ca

l
Lo

ca
ti

o
n 

o
f 

LM
(s

)
Sp

ec
im

en
 t

yp
e

LM
 h

is
to

lo
g

y
P

IK
3C

A
 o

r 
N

R
A

S 
al

te
ra

ti
o

n
%

 V
A

F

1
9

M
C

LO
V

E
S

M
ul

tif
o

ca
l

Su
p

er
fic

ia
l s

o
ft

 t
is

su
es

E
xc

is
io

n
C

o
nv

en
tio

na
l

PI
K
3C

A
 E

54
2K

14

2
4

F
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
PI
K
3C

A
 E

54
2K

7

3
1

F
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
PI
K
3C

A
 H

10
47

R
11

4
17

M
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
PI
K
3C

A
 H

10
47

R
4

5
18

M
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
PI
K
3C

A
 H

10
47

L
4

6
8

F
K

lip
p

el
–T

re
na

un
ay

Lo
ca

liz
ed

Su
p

er
fic

ia
l s

o
ft

 t
is

su
es

E
xc

is
io

n
C

o
nv

en
tio

na
l

PI
K
3C

A
 H

10
47

R
9

7
9

M
 �


Lo

ca
liz

ed
V

is
ce

ra
l

C
o

re
 b

io
p

sy
C

o
nv

en
tio

na
l

PI
K
3C

A
 E

54
5K

7

8
3

F
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
PI
K
3C

A
 C

42
0R

5

9
23

M
 �


Lo

ca
liz

ed
V

is
ce

ra
l

In
ci

si
o

na
l b

io
p

sy
C

o
nv

en
tio

na
l

PI
K
3C

A
 H

10
47

R
4

10
16

F
PT

E
N

-li
ke

 h
am

ar
to

m
a

Lo
ca

liz
ed

Su
p

er
fic

ia
l s

o
ft

 t
is

su
es

E
xc

is
io

n
C

o
nv

en
tio

na
l

PI
K
3C

A
 H

10
47

R
3

11
3

F
C

LO
V

E
S

M
ul

tif
o

ca
l

Su
p

er
fic

ia
l s

o
ft

 t
is

su
es

E
xc

is
io

n
C

o
nv

en
tio

na
l

PI
K
3C

A
 E

54
5K

12

12
1

M
 �


M

ul
tif

o
ca

l
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
PI
K
3C

A
 H

10
47

R
2

13
4

F
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
PI
K
3C

A
 E

54
2K

6

14
5

M
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
PI
K
3C

A
 H

10
47

R
5

15
1

F
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
PI
K
3C

A
 E

54
5K

1

16
14

F
 �


M

ul
tif

o
ca

l
V

is
ce

ra
l

E
xc

is
io

n
C

o
nv

en
tio

na
l

PI
K
3C

A
 C

42
0R

14

17
2

F
C

LO
V

E
S

M
ul

tif
o

ca
l

Su
p

er
fic

ia
l s

o
ft

 t
is

su
es

E
xc

is
io

n
C

o
nv

en
tio

na
l

PI
K
3C

A
 C

42
0R

38

18
16

F
C

LO
V

E
S

Lo
ca

liz
ed

Su
p

er
fic

ia
l s

o
ft

 t
is

su
es

E
xc

is
io

n
C

o
nv

en
tio

na
l

PI
K
3C

A
 E

45
3K

32

19
10

F
C

LO
V

E
S

M
ul

tif
o

ca
l

Su
p

er
fic

ia
l s

o
ft

 t
is

su
es

E
xc

is
io

n
C

o
nv

en
tio

na
l

PI
K
3C

A
 H

10
47

L
15

20
9

M
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
PI
K
3C

A
 H

10
47

R
5

21
9

F
 �


M

ul
tif

o
ca

l
V

is
ce

ra
l

E
xc

is
io

n
K

ap
o

si
fo

rm
N
RA

S 
Q

61
R

5

22
8

M
 �


M

ul
tif

o
ca

l
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

K
ap

o
si

fo
rm

N
RA

S 
Q

61
R

5

23
9

F
 �


M

ul
tif

o
ca

l
V

is
ce

ra
l

E
xc

is
io

n
K

ap
o

si
fo

rm
N
RA

S 
Q

61
R

1

24
45

M
 �


M

ul
tif

o
ca

l
V

is
ce

ra
l

C
o

re
 b

io
p

sy
C

o
nv

en
tio

na
l

N
RA

S 
Q

61
R

6

25
10

F
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
C

o
re

 b
io

p
sy

K
ap

o
si

fo
rm

N
RA

S 
Q

61
R

14

26
17

M
 �


M

ul
tif

o
ca

l
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
W

T
N

A

27
24

M
 �


Lo

ca
liz

ed
B

o
ne

C
o

re
 b

io
p

sy
C

o
nv

en
tio

na
l

W
T

N
A

28
3

M
 �


M

ul
tif

o
ca

l
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
W

T
N

A

29
11

F
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
E

xc
is

io
n

C
o

nv
en

tio
na

l
W

T
N

A

30
9

F
 �


Lo

ca
liz

ed
Su

p
er

fic
ia

l s
o

ft
 t

is
su

es
, b

o
ne

B
io

p
sy

C
o

nv
en

tio
na

l
W

T
N

A

C
LO

V
E

S 
– 

co
ng

en
ita

l l
ip

o
m

at
o

us
 o

ve
rg

ro
w

th
, v

as
cu

la
r 

an
o

m
al

ie
s,

 e
p

id
er

m
al

 n
ev

i, 
an

d
 s

ke
le

ta
l a

no
m

al
ie

s;
 N

A
 –

 n
o

t 
ap

p
lic

ab
le

; V
A

F 
– 

va
ria

nt
 a

lle
le

 fr
eq

ue
nc

y 
o

f P
IK
3C

A
 o

r 
N
RA

S.

https://doi.org/10.7554/eLife.74510


 Research article﻿﻿﻿﻿﻿﻿ Medicine

Shaheen, Tse et al. eLife 2022;11:e74510. DOI: https://doi.org/10.7554/eLife.74510 � 6 of 17

200 400 600 800 1000 1068

0
2
4
6
8

10

Protein Length (aa)

M
ut

at
io

na
l C

ou
nt

H1047L/R
PI3K p85B
PI3K RBD
PI3K C2
PI3Ka
PI3K/PI4K

50 100 150 189

0
1
2
3
4
5

Protein Length (aa)

M
ut

at
io

na
l C

ou
nt

Q61L/R

Prior mTOR therapy
Kaposiform histology

PIK3CA
NRAS
ROS1

KMT2C
ATM

BRCA1
CD36

CHEK2
FAT1
KDR

LZTR1
MED12
MUYTH

RAD51C
SMAD4

TP53

Variant Type
Point mutation/indel
Deep deletion
Fusion + point mutation

A

B

Ras

C

D Conventional Kaposiform

300 μm 200 μm PIK3CA NRAS WT
0%

20%
40%
60%
80%

100%

LM histology by 
PIK3CA and NRAS mutational status

Conventional
Kaposiform

GOPC ROS1

GOPC Exons 1-7 ROS1 Exons 35-43

Chromosome 6

Figure 1. Mutational landscape and histopathology of lymphatic malformations (LMs). (A) Oncoprint showing mutational landscape of 30 LM samples 
sequenced. (B) Lollipop plot showing spectrum of PIK3CA and NRAS mutations in this cohort. (C) Schema showing details of GOPC–ROS1 fusion 
identified in an NRAS and PIK3CA wild-type LM. (D) Representative histologic images for LMs with conventional and kaposiform histology. The relative 
frequencies of PIK3CA and NRAS mutations in the two histologic variants are plotted.
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of the entire lesion due to the histologic spatial heterogeneity often seen in LMs with kaposiform 
histology. Additional histopathologic features were assessed, including altered adipose tissue, muscu-
larized blood vessels, vascular endothelial cell atypia, and inflammation; no statistical significance was 
identified between the four NRAS-mutant LM cases and the remainder of the patient cohort.

Case report and N-of-1 clinical trial results
One of the conventional histology LMs was a 23-year-old male with no significant medical or family 
history who presented with subacute abdominal pain (Patient #9, Table 1). He was hospitalized and 
his exam revealed a distended abdomen that was tender to palpation. A computed tomography 
exam revealed a large solid mass based on the retroperitoneal area and the pancreas (Figure 2A), 
and a neoplastic process was suspected. A core needle biopsy was attempted but yielded no defin-
itive tissue diagnosis. An open laparoscopic surgical biopsy was performed and revealed a vascular 
tumor with features of a giant retroperitoneal and pancreatic LM (Figure 2D, E). After discussing a 
surgical approach, the patient and the surgical team decided not to proceed due to the complexity 

A B C

E

F G

D

600 μm 200 μm 

50 μm 50 μm 

Figure 2. Imaging and histological analysis of lymphatic malformation (LM) patient. (A) Baseline CT abdomen scan at the time of presentation 
demonstrating a large retroperitoneal/pancreatic LM. (B) CT abdomen scan 6 weeks after the initiation of alpelisib. (C) CT abdomen scan 1 year into the 
trial. (D, E) Hematoxylin and eosin (H&E)-stained photomicrographs of the LM showing dilated lymphatic channels percolating through visceral fat and 
associated patchy lymphocytic inflammation (×4 and ×20, respectively). (F) Immunohistochemistry utilizing an anti-P-6S antibody demonstrates PI3Ka 
pathway activation within the channels’ lining cells. (G) Anti-P-AKT positivity in the lining endothelium of lymphatic channels as well.
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of surgical resection and associated risks. The 
tissue was submitted for NGS to identify potential 
biomarkers for targeted therapy.

Clinical-grade sequencing of the biopsy 
sample from Patient #9 uncovered a single acti-
vating point mutation in PIK3CA (H1047R). All 
other genes in the panel were wild-type except 
for another unit of the PI3K complex (PIK3C2B) 
that showed a variant (R458Q) of unknown signif-
icance (VUS). To confirm activation of the PI3Kα 
pathway, we performed IHC staining of the 
downstream targets (P-AKT and P-6S), and, as 
predicted, these phosphorylation events were 
detected in the lining cells of the abnormal 
lymphatic channels (Figure 2F, G).

Based on the genomic profile, we designed 
and offered this young man a single-patient 
(N-of-1) personalized clinical trial of the PI3Kα 
inhibitor alpelisib (NCT03941782), which at 
the time was still investigational (non-FDA 
approved). Screening procedures included 
an echocardiogram that revealed an ejection 
fraction (EF) of 47%. A cardiac MRI confirmed 
a low EF with no infiltrative process or other 
abnormalities. Paradoxically, the patient was 
completely asymptomatic from a cardiac stand-
point and he was able to run two miles on a daily 
basis. We hypothesized that the decreased EF, 
in the absence of accompanying clinical signs or 
symptoms of heart failure, was likely artefactual 
due to hemodynamic changes related to the 
very large circulatory volume sequestration in 
his abdomen.

The patient was started on alpelisib daily 
dose of 350  mg orally (Juric et  al., 2018) and 
he reported regression of his abdominal bulge 
within a few days. He reported no adverse 
events and was closely monitored for hypergly-
cemia. Repeated echocardiogram 2 months later 
showed normalization of the EF. A CT scan of the 
abdomen done 6 weeks into the trial revealed 
remarkable shrinkage of the LM (Figure  2B). 
Follow-up CT scans showed progressive reduc-
tion until complete response at 1 year of trial initi-
ation (Figure  2C). The patient continued to do 
well on maintenance alpelisib for 2 years with no 
evidence of progression. After 2 years, alpelisib 
was discontinued due to theoretical concerns 
about long-term adverse impact on vascular 
homeostasis. Unfortunately, the mass recurred 
after a few weeks so the patient was resumed 
on alpelisib with a second deep partial response, 
which is still ongoing for over 3 years.
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Figure 3. Alpelisib reduces lymphatic malformation-
lymphatic endothelial cell (LM-LEC) viability. (A) 
Logarithmic dose–response curve of alpelisib was 
performed using the xCELLigence RTCA system. 1, 3, 
10, 30, and 100 nM (n = 5 replicates) of alpelisib were 
used to determine the concentration–response curve. 
The alpelisib half maximal inhibitory concentration 
(IC50) was calculated for LM-LEC at 24 hr after treatment 
as 4.72 × 10−9 M. Error bars are shown as mean +/- 
standard deviation (SD), which was automatically 
calculated for each data point by the xCELLigence 
RTCA system software (Version 2.0) based on five 
replicates per drug concentration. (B) Illustrative 
picture of LM-LEC clonogenic plaques at 24 hr after 
alpelisib treatment (4.72 × 10−9 M). Negative, no 
treatment; dimethyl sulfoxide (DMSO), vehicle control. 
Experiments were performed two times with similar 
results. LM-LEC colonies were stained with crystal violet 
(0.3%). (C) Colony count 24 hr after alpelisib treatment 
(4.72 × 10−9 M; n = 2 wells/condition). Error bars are 

Figure 3 continued on next page
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Alpelisib inhibits primary PI3Kα-
mutant LM-derived endothelial 
cells
We have also investigated the concentration-
dependent effects of alpelisib on LM-LECs 
isolated from a surgically resected specimen 

(Boscolo et al., 2015). Targeted sequencing of DNA from LM-LECs identified a somatic missense 
mutation in PIK3CA (H1047L), the same locus altered in our alpelisib-treated patient and the site of 
half of the PIK3CA alterations in the LM cohort studied (Table 1). In addition, a nonsense mutation of 
the regulatory PI3K unit PIK3R3 (R309*) was also detected in the CD31-positive LM-LECs and CD31-
negative nonendothelial cells isolated from the same LM, indicating its germline origin (Boscolo 
et al., 2015). We investigated the effect of alpelisib on the growth of LM-LECs and a concentration-
dependent response curve was observed (Figure 3). The IC50 of alpelisib against LM-LECs was empir-
ically determined in vitro to be 4.72 × 10−9 M at 24 hr. This in vitro translational model confirms the 
sensitivity of LM-derived human cells containing a target H1047R/L mutation to alpelisib.

Refined genomic and sequencing analyses
We performed whole-genome sequencing (WGS) on paired LM/germline DNA from our index patient 
to explore the mutational profile beyond the genes that were probed in the Clinical Laboratory 
Improvement Amendments (CLIA)-approved clinical sequencing assay. The PIK3CA H1047R mutation 
was identified with a VAF of 11%. This finding is consistent with the ≤10% rate of mutant cells, and low 
tumor cellularity of LMs with PIK3CA mutation (Luks et al., 2015). Few other somatic coding muta-
tions were identified in the LM tissue (Supplementary file 1).

To gain further molecular mechanistic insight, we have also performed RNA-seq studies to identify 
gene expression patterns within the LM sample from our index patient compared to normal tissue 
(Figure 4). RNA-seq data of biopsy samples from Patient #9 (n = 2 samples; Figure 4A, Group A) were 
compared to several normal human control tissue samples from bladder, colon, kidney, and salivary 
gland (n = 4, one sample per each tissue; Figure 4A, Group B). There is little difference between the 
two LM samples, but, by using an arbitrary cutoff of at least twofold up or down with adjusted p values 
of 0.05 or less, we identified 668 upregulated and 850 downregulated genes. The heatmap summa-
rizes the results of the differential gene expression analysis; 125 genes are shown. The volcano plot 
summarizes the distribution of genes that were differentially expressed (Figure 4B). Here, the vertical 
axis shows the p value and the horizontal axis shows the fold-change. The genes that were more than 
twofold changed and had an adjusted p value less than 0.05 are shaded red. Similar numbers of genes 
were up- and downregulated. Several of the most highly induced genes, CHI3L1, GPX1, PLIN1, PLIN4, 
and JAK3, have been linked to enhanced growth or cell survival in other tumor types (Cheng et al., 
2019; Qiu et al., 2018; Sirois et al., 2019; Vadivel et al., 2021; Zhang et al., 2020). Finally, a prelim-
inary Gene Ontogeny (GO) analysis (Subramanian et al., 2007) of Patient #9 LM revealed enrichment 
of mRNA of genes involved in vascular development, cell motility, inflammatory response, positive 
regulation of response to stimuli, blood vessel morphogenesis, among others; notably, the kinase 
JAK3 gene was one of the highest expression mRNAs in the LMs compared to normal tissue controls.

Discussion
Here, we report the mutational landscape of a patient cohort of LMs (n = 30 cases) which underwent 
comprehensive genomic profiling. We have confirmed prior reports that hotspot activating mutations 
in PIK3CA are common driver events in these lesions, seen in 20 (67%) of these cases. Interestingly, 
NRAS mutations were seen in an additional five (17%) cases and were particularly enriched in LMs with 
a kaposiform histopathology. This finding supports previous studies that have shown that LMs with 
kaposiform features likely represent a distinct entity (KLA) (Barclay et al., 2019; Croteau et al., 2014). 
KLM have distinct clinical, histologic, and genomic features. Clinically, they are more likely to occur in 
young patients and commonly present as generalized processes with involvement of the mediastinum, 
pleura, and pericardium. Histologically, they are composed of highly cellular sheet-like and nodular 
proliferations of spindle cells, reminiscent of Kaposi sarcoma (Croteau et al., 2014). Unlike Kaposi 
sarcoma, the tumor cells lack immunopositivity for human herpesvirus-8 (HHV-8) latency-associated 

shown as mean +/- SD calculated by GraphPad Prism 
by determining the square root of variance for each 
data point deviation relative to the mean.

Figure 3 continued
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Figure 4. RNA-seq analysis of lymphatic malformation (LM) samples from index patient (#9). (A) The heatmap 
summarizes the results of the differential gene expression analysis. Up- and downregulated genes are shaded red 
and blue, respectively. (B) The volcano plot summarizes the distribution of genes that were differentially expressed. 
The vertical axis shows the p value and the horizontal shows the fold-change. The genes that were more than 
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nuclear antigen (LANA). Genomically, recent studies have shown they tend to harbor somatic acti-
vating alterations in NRAS (Barclay et al., 2019Barclay et al., 2019). As a caveat, for the one NRAS-
mutant LM with classic histology, the histologic classification was based on a small biopsy, and it is 
certainly possible that kaposiform histology was present in the large visceral LM but not captured by 
the limited sampling by core needle biopsy. Importantly, three of the five patients (60%) with NRAS-
mutant LMs had failed treatment with sirolimus prior to NGS. There are reports that some NRAS-
mutant LMs may respond to treatment with MEK inhibitors (Dummer et al., 2017), suggesting this 
may be an option for LMs with kaposiform features.

Of the five cases without either PIK3CA or NRAS mutations, all of classic histology, a single case 
had a known pathogenic in-frame GOPC–ROS1 genetic fusion predicted to have an intact ROS1 
kinase domain and thus potentially function as the driver. Similar GOPC–ROS1 fusions have been seen 
in pediatric gliomas and adult lung cancers and may be sensitive to ROS1 inhibitors (Davare et al., 
2018; Drilon et al., 2021). These data suggest that most LMs may have a potentially actionable driver 
mutation, with PIK3CA mutations dominating LMs with conventional histology and NRAS mutations 
predominantly or exclusively seen in the minor subset of LMs with kaposiform features. It is possible 
that the other NRAS and KRAS wild-type LMs may also have oncogenic alterations in other members 
of the PIK3CA or MAPK signaling pathway members that were not profiled by targeted sequencing 
strategies. We appreciate that one limitation of our study is that the cohort presented in Table 1 
was established from clinical information provided by the ordering physicians early in the course of 
diagnostic investigation. Therefore, we cannot rule out that the working clinical diagnosis and/or 
pathologic diagnoses were refined after genomic analyses without transmission of these data to the 
reference laboratory that supplied the cohort data. Comprehensive NGS analysis of LMs with PIK3CA 
and NRAS wild-type may be required to identify any potential actionable driver mutations. In patients 
without solid LM tissue available for NGS, liquid biopsy—or NGS performed on circulating tumor 
DNA (ctDNA) in peripheral blood—may be a possible solution for LMs, which are innately associated 
with the vascular system and thus potentially ‘shedding’ ctDNA into the peripheral blood.

To illustrate the potential for therapeutic intervention of the target mutations identified, we 
performed an N-of-1 trial of alpelisib in one young adult index patient with a giant retroperitoneal and 
pancreatic LM with conventional histological features and a gain-of-function H1047R somatic PIK3CA 
mutation. Our index patient experienced a rapid, complete, and durable clinical response with this 
small molecule PI3Kα inhibitor. Given the high frequency of PIK3CA mutations in pediatric LMS (Luks 
et  al., 2015), this finding suggests that alpelisib may be highly effective for systemic, nonsurgical 
treatment approach to this class of disorders. Furthermore, the lack of toxicity to alpelisib in our case 
is promising in terms of a potential future treatment of young patients with LMs. Our patient did not 
experience increases in glucose levels, consistent with reported lack of alpelisib-induced hypergly-
cemia in most pediatric patients with PROS (Venot et al., 2018; Mayer et al., 2017). In this prior 
series, only one patient developed new-onset hyperglycemia and this was controlled by dietary modi-
fication (Venot et al., 2018). These findings suggest that the effect of alpelisib on inducing hypergly-
cemia might perhaps be less of a concern in younger patients, who may have more robust glucose 
homeostasis, compared with older patients who may already have subclinical insulin resistance.

Ultimately, we decided to hold alpelisib after 2 years of complete radiological response, and 
unfortunately the LM relapsed but the patient still achieved a major partial response on the second 
challenge with alpelisib. This result suggests that PI3Kα inhibitors do not completely eradicate all 
LM-initiating cells, and they may need to be given long term (in our young index patient case, perhaps 
over decades) in PIK3CA-mutant LMs for sustained control. This class of drugs can also be envisioned 
to be utilized in a neoaduvant approach to render large cases resectable. Our patient declined surgery 
after initial response and he continues on alpelisib for several years. Acquired resistance mechanisms 
to PI3Kα inhibitors have been reported, due to other associated compensatory or bypassing muta-
tions such as ones involving RAS oncogene (Janku et al., 2014) or PTEN tumor suppressor gene 
(Juric et al., 2017), and these may conceivably arise in these patients with longer follow-up over time. 
Deftly balancing the potential benefits of continuing treatment with the potential for drug resistance 

twofold changed and had an adjusted p value less than 0.05 are shaded red. Similar numbers of genes were up- or 
downregulated.

Figure 4 continued

https://doi.org/10.7554/eLife.74510


 Research article﻿﻿﻿﻿﻿﻿ Medicine

Shaheen, Tse et al. eLife 2022;11:e74510. DOI: https://doi.org/10.7554/eLife.74510 � 12 of 17

mechanisms will require monitoring for both actionable known and novel mutations through NGS of 
LM tissue samples or liquid biopsy.

In a series of pediatric patients with LMs, Luks et al. identified PIK3CA gene mutations in patients 
with sporadic LMs in 16 out of 17 patients (94%) or syndromic LMs such as the Klippel–Trenaunay 
syndrome in 19 out of 21 patients (90%), fibro-adipose vascular anomaly in 5 out of 8 patients (63%), 
along with the CLOVES syndrome in 31 out of 33 patients (94%) (Luks et al., 2015). H1047R was 
one of the top 2 most frequently encountered hotspot mutations in this series. Venot et al. reported 
a single arm clinical trial of alpelisib in 19 patients with pediatric PROS including CLOVES (Venot 
et al., 2018). Alpelisib treatment-induced clinical responses in all patients, including improvement of 
cardiac EF as seen in our index patient. Of note, alpelisib-induced responses in patients who did not 
respond to prior treatment with mTOR inhibitors, such as rapamycin, similar to observations in KRAS-
mutant oncology patients (Di Nicolantonio et al., 2010), similar to the recent findings of Delestre et 
al. (Delestre et al., 2021). Small clinical series have shown that mTOR inhibition can induce responses 
in a subset of unselected advanced LMs, with observed response rates of ~50–60% (Freixo et al., 
2020). The on driver-oncoprotein activity, higher response rates, and tolerability suggest alpelisib may 
be more effective than mTOR inhibitors in this setting. It is tempting to speculate that a wide variety 
of PIK3CA-mutant somatic overgrowth conditions (Hucthagowder et al., 2017) may be amenable to 
medical treatment with FDA-approved PI3Kα inhibitors, either as neoadjuvant treatment in poten-
tially resectable cases, or as primary treatment in unresectable cases (Juric et al., 2018; Juric et al., 
2017; Bendell et al., 2012; Hong et al., 2012; Juric et al., 2015). Since our submission, the FDA-
approved alpelisib for pediatric and adult patients with PROS, and several clinical trials are underway 
to assess safety, efficacy, and quality-of-life with alpelisib in patients with a PROS diagnosis (e.g., 
NCT04589650, NCT04085653, NCT04980833, and NCT05294289), demonstrating the swiftness of 
efforts to address this clinical need.

Furthermore, in our WGS analysis, we identified only a few somatic variants within protein-coding 
genetic sequences (Supplementary file 1) beyond what was reported in the cancer gene panel 
(Table 1). The low frequency of somatic mutations is consistent with findings in other low-grade pedi-
atric tumors (Akhavanfard et al., 2020). In addition to detecting the PIK3CA H1047R mutation, this 
WGS confirmed the variant detected by the cancer gene panel in the PIK3C2B gene and demon-
strated that it was germline. Although this in PIK3C2B variant has not been characterized and may be 
a benign polymorphism, this finding raises the issue of whether other alterations in the pathway may 
cooperate with activating mutations of PIK3CA to induce cell proliferation. The low VAF driver muta-
tions in tissue derived from LMs is likely due to the fact that most pathological tissue is composed of 
reactive stromal elements while the clonal cells represent a relatively small portion (presumably the 
lymphatic channel-lining endothelial cells). Consistent with this observation, in the alpelisib-treated 
index patient, we observed most intense activation of the PI3Kα pathway in these lymphatic channel-
lining endothelial cells (Figure 2F, G). The high representations of pathways associated with vascular 
development, cell motility, inflammatory response, positive regulation of response to stimuli, blood 
vessel morphogenesis in our gene expression analysis are consistent with a mechanistic hypothesis 
that most of the lesion represents an intense reactive response to the (presumably) clonal LM-LECs, 
although the appropriate comparator control tissues for these lesions is not clear.

Evidence is accumulating that a variety of ‘nonmalignant’ syndromes associated with abnormal 
tissue growth may be driven by underlying alterations in classic oncogenes (Mustjoki and Young, 
2021). PIK3CA mutations are seen not only in LMs but other vascular anomalies, highlighting the 
role of PIK3CA activation in angiogenesis, lymphangiogenesis, and vascular neoplasms (Castel et al., 
2016; Castillo et al., 2016; Limaye et al., 2015; Ren et al., 2021). Endometriosis, uterine fibroids, 
and seborrheic keratoses all have been found to harbor mutations in cancer-related genes (Rafnar 
et al., 2018; Gallagher et al., 2019; Fritsche et al., 2018; Sanders et al., 2018; Anglesio et al., 
2017). These findings suggest that targeted therapies being developed for invasive cancers may also 
be active in proliferative lesions that are not classified as invasive cancers that harbor the targeted 
alteration.

In summary (Figure 5), we find that the majority of LMs have driver mutations that are potentially 
targetable. LMs with classic histology mostly have PIK3CA mutations that may respond to alpelisib. 
LMs with kaposiform histopathology are enriched in NRAS mutations, and studies are required to 
determine if these may respond to clinically available MEK inhibitors. LMs that are wild-type for 
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PIK3CA and NRAS may have other actionable alterations, such as the GOPC–ROS1 fusion seen in our 
series and may require more comprehensive genomic analyses to identify them. Systemic treatment 
with targeted therapy aimed at the driver mutation in LMs may be an option for some patients who 
are not controlled by surgery and other conventional treatments.
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